Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 68 | 4 | 255–260

Article title

Rola osteoprotegeryny w patogenezie zaburzeń gospodarki wapniowo-fosforanowej i metabolizmu kostnego w przewlekłej chorobie nerek

Content

Title variants

EN
The role of osteoprotegerine in pathogenesis of mineral and bone disorders in chronic kidney disease (CKD-MBD)

Languages of publication

PL

Abstracts

PL
Zaburzenia gospodarki wapniowo-fosforanowej i metabolizmu kostnego należą do najczęstszych patologii u chorych na przewlekłą chorobę nerek (PChN), powodujących przyspieszony rozwój miażdżycy. W związku z tym są zaliczane do nieklasycznych czynników ryzyka sercowo-naczyniowego będących przyczyną zwiększonej chorobowości i śmiertelności, zwłaszcza u chorych leczonych nerkozastępczo. Osteoprotegeryna (OPG) jest ważnym fizjologicznym regulatorem różnicowania osteoklastów. Jako fałszywy receptor wiąże ligand receptora aktywującego czynnik jądrowy κB (RANKL), uniemożliwiając jego wiązanie z receptorem RANK i dojrzewanie komórek prekursorowych osteoklastów. Fizjologiczna rola OPG wykracza jednak poza funkcję czynnika regulującego metabolizm kostny, ponieważ jest ona również inhibitorem procesu apoptozy indukowanego przez proces zapalny. Podwyższone stężenia krążącej OPG stwierdza się u chorych z nasilonymi zmianami miażdżycowymi. Wyniki badań eksperymentalnych wskazują, że OPG nie stymuluje, a wręcz hamuje proces aterogenezy. Niniejsza praca stanowi przegląd dostępnego piśmiennictwa przedstawiającego udział OPG w patogenezie zaburzeń gospodarki wapniowo-fosforanowej i metabolizmu kostnego oraz zwapnień naczyniowych w PChN. Wyniki tych badań wskazują na akumulację OPG w krążeniu chorych na PChN. Osteoprotegeryna nie jest czynnikiem uczestniczącym w patogenezie zwapnień naczyniowych, a jedynie ich wskaźnikiem.
EN
Mineral and bone disorders are the most common pathology in patients with chronic kidney disease (CKD) resulting in the development of accelerated atherosclerosis. Therefore, they are considered as non-traditional cardiovascular risk factors and the cause of increased morbidity and mortality, especially in patients on renal replacement therapy. Osteoprotegerin (OPG) is an important physiological regulator of osteoclastogenesis. As decoy receptor, it binds to the receptor activator of nuclear factor NF- kappaB ligand (RANKL), preventing it from binding to the (RANK) receptor and maturation of osteoclast precursors. The physiological role of OPG, beyond the regulatory function of bone turnover is the inhibition of cell apoptosis induced by inflammatory processes. Elevated levels of circulating OPG is observed in patients with severe atherosclerotic lesions. The experimental studies suggest that OPG does not stimulate, but on the contrary, inhibits the process of atherogenesis. This paper provides an overview of the available literature presenting the role of OPG in the pathogenesis of mineral and bone disorders in CKD. The results of these studies revealed the accumulation of circulating OPG in CKD patients. Additionally, OPG is rather a marker and not a factor involved in the pathogenesis of vascular calcification development in this group of patients.

Discipline

Year

Volume

68

Issue

4

Pages

255–260

Physical description

Contributors

  • Stacja Dializ Wojewódzkiego Szpitala Specjalistycznego Nr 2 w Jastrzębiu-Zdroju
  • Stacja Dializ Samodzielny Publicznego Zakładu Opieki Zdrowotnej Wojewódzkiego Szpitala Specjalistycznego Nr 3 w Rybniku
  • Zakład Promocji Zdrowia Katedry Patofizjologii
author
  • Katedra Patofizjologii Wydziału Lekarskiego w Katowicach Śląskiego Uniwersytetu Medycznego w Katowicach ul. Medyków 18 40-752 Katowice tel. +48 32 252 60 91

References

  • 1. Simonet W.S., Lacey D.L., Dunstan C.R. i wsp. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.
  • 2. Yasuda H., Shima N., Nakagawa N. i wsp. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998; 139: 1329–1337.
  • 3. Mizuno A., Murakami A., Nakagawa N. i wsp. Structure of the mouse osteoclastogenesis inhibitory factor (OCIF) gene and its expression in embryogenesis. Gene 1998; 215: 339–343.
  • 4. Tsuda E., Goto M., Mochizuki S. i wsp. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997; 234: 137–142.
  • 5. Morinaga T., Nakagawa N., Yasuda H., Tsuda E., Higashio K. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis- inhibitory factor. Eur. J. Bichem. 1998; 254: 685–691.
  • 6. Yamaguchi K., Kinosaki M., Goto M. i wsp. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J. Biol. Chem. 1998; 273: 5117–5123.
  • 7. Boyle W., Simonet W., Lacey D. Osteoclast differentiation and activation. Nature 2003; 423: 337–342.
  • 8. Hsu H., Lacey D.L., Dunstan C.R. i wsp. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. (USA) 1999; 96: 3540–3545.
  • 9. Zauli G., Melloni E., Capitani S., Secchiero P. Role of full-length osteoprotegerin in tumor cell biology. Cell. Mol. Life. Sci. 2009; 66: 841–851.
  • 10. Miyashita T., Kawakami A., Nakashima T. i wsp. Osteoprotegerin (OPG) acts as an endogenous decoy receptor in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis of fibroblast-like synovial cells. Clin. Exp. Immunol. 2004; 137: 430–436.
  • 11. Eleftheriadis T., Antoniadi G., Liakopoulos V., Stefanidis I., Galaktidou G. Inverse association of serum 25-hydroxyvitamin D with markers of inflammation and suppression of osteoclastic activity in hemodialysis patients. Iran J. Kidney Dis. 2012; 6: 129–135.
  • 12. Khosla S., Arrighi H.M., Melton III L.J. i wsp. Correlates of osteoprotegerin levels in women and men. Osteoporosis Int. 2002; 13: 394–399.
  • 13. Lieb W., Gona P., Larson M.G. i wsp. Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident CVD and mortality. Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1849–1854.
  • 14. Kudlacek S., Schneider B., Woloszczuk W. i wsp. Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 2003; 32: 681–686.
  • 15. Jiang J.Q., Lin S., Xu P.C., Zheng Z.F., Jia J.Y. Serum osteoprotegerin measurement for early diagnosis of chronic kidney disease-mineral and bone disorder. Nephrology (Carlton) 2011; 16: 588–594.
  • 16. Mikoś H., Mikoś M., Mikoś M., Obara-Moszyńska M., Niedziela M. Rola szlaku OPG/RANKL/RANK w otyłości u dzieci i młodzieży. Nowiny Lek. 2010; 5: 403–409.
  • 17. Doi S., Yorioka N., Masaki T., Ito T., Shigemoto K., Harada S. Increased serum osteoprotegerin level in older and diabetic hemodialysis patients. Ther. Apher. Dial. 2004; 8: 335–339.
  • 18. Doumouchtsis K., Perrea D., Doumouchtsis S. i wsp. Regulatory effect of parathyroid hormone on sRANKL-Osteoprotegerin in hemodialysis patients with renal bone disease. Ther. Apher. Dial. 2009; 13: 49–55.
  • 19. Pencak P., Czerwieńska B., Ficek R. i wsp. Calcification of coronary arteries and abdominal aorta in relation to traditional and novel risk factors of atherosclerosis in hemodialysis patients. BMC Nephrology 2013, 14: 10.
  • 20. Kurnatowska I., Grzelak P., Kaczmarska M., Stefańczyk L., Nowicki M. Progression of atherosclerosis and coronary calcification in hemodialysis patients. Nephron. Clin. Pract. 2011; 117: c297–c304.
  • 21. Mesquita M., Demulder A., Damry N. i wsp. Plasma osteoprotegerin is an independent risk factor for mortality and an early biomarker of coronary vascular calcification in chronic kidney disease. Clin. Chem. Lab. Med. 2009; 47: 339–346.
  • 22. Peters B.M., Moyses R.M., Jorgetti V., Martini L.A. Effects of parathyroidectomy on bone remodeling markers and vitamin D status in patients with chronic kidney disease-mineral and bone disorder. Int.Urol. Nephrol. 2007; 39: 1251–1256.
  • 23. Zheng C.M., Chu P., Wu C.C. i wsp. Association between increased serum osteoprotegerin levels and improvement in bone mineral density after parathyreidectomy in hemodialysis patients. Tohoku J. Exp. Med. 2012; 226: 19–27.
  • 24. Kazama J.J., Kato H., Sato T. i wsp. Circulating osteoprotegerin is not removed through haemodialysis membrane. Nephrol. Dial. Transplant. 2002; 17: 1860–1861.
  • 25. Nescimento M.M., Hayashi S.Y., Qureshi A.R. i wsp. Changes in circulating biomarkers during a single hemodialysis session. Hemodial. Int. 2013; 17: 59–66.
  • 26. Jankowska A., Korzon-Burakowska A., Kamińska B. System osteoprotegeryna, receptor aktywujący jądrowy czynnik κB oraz ligand dla receptora aktywującego jądrowy czynnik kB a zmiany kostne u dzieci z nieswoistymi zapaleniami jelit. Prz. Gastroenterol. 2011; 6: 213–217.
  • 27. Nishi H., Nii-Kono T., Ikeda K., Fujimori A., Fukagawa M. No change in circulating osteoprotegerin levels by intravenous calcitriol therapy among dialysis patients with secondary hyperparathyroidism. Clin. Nephrol. 2006; 65: 149–150.
  • 28. Kazama J.J., Omori K., Takahashi N. i wsp. Maxacalcitol therapy decreases circulating osteoprotegerin levels in dialysis patients with secondary hyperparathyroidism. Clin. Nephrol. 2005; 64: 64–68.
  • 29. Cianciolo G., La Manna G., Donati G. i wsp. Effects of unfractioned heparin and low-molecular-weight heparin on osteoprotegerin and RANKL plasma levels in haemodialysis patients. Nephrol. Dial. Transplant. 2011; 26: 646–652.
  • 30. Bucay N., Sarosi I., Dunstan C.R. i wsp. Osteoprotegerin – deficient mice develop early onset osteoporosis and arterial calcification. Genes. Dev. 1998; 12: 1260–1268.
  • 31. Min H., Morony S., Sarosi I. i wsp. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 2000; 192: 463–474.
  • 32. Price P.A., June H., Buckley J., Williamson M. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterio. Thromb. Vasc. Biol. 2001; 21: 1610–1616.
  • 33. Osako M.K., Nakagami H., Shimamura M. i wsp. Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin-angiotensin system in vascular calcification. Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1287–1296.
  • 34. Browner W.S., Lui L.Y., Cummings S.R. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J. Clin. Endocrinol. Metab. 2003; 88: 60–72.
  • 35. Jono S., Ikari Y., Shioi A. i wsp. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 2002; 106: 1192–1194.
  • 36. Mizia-Stec K., Gąsior Z., Holecki M. i wsp. Przebudowa strukturalna tętnic u kobiet z otyłością prostą a stężenie osteoprotegeryny w surowicy krwi. Endokrynol. Otył. 2009, 5: 60–65.
  • 37. Mizobuchi M., Towler D., Slatopolsky E. Vascular calcification: The killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 2009; 20: 1453–1464.
  • 38. Block G.A., Klassen P.S., Lazarus J.M., Ofsthun N., Lowrie E.G., Chertow G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 2004; 15: 2208–2218.
  • 39. Floege J., Kim J., Ireland E. i wsp. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol. Dial. Transplant. 2011; 26: 1948–1955.
  • 40. Palmer S.C., Hayen A., Macaskill P. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 2011; 305: 1119–1127.
  • 41. Block G.A., Hulbert-Shearon T.E., Levin N.W., Port F.K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 1998; 31: 607–617.
  • 42. Sigrist M.K., Levin A., Er L., McIntyre C.W. Elevated osteoprotegerin is associated with all-cause mortality in CKD stage 4 and 5 patients in addition to vascular calcification. Nephrol. Dial. Transplant. 2009; 24: 3157–3162.
  • 43. Nakashima J.J., Carrero A.R., Qureshi T. i wsp. Plasma osteoprotegerin, arterial stiffness, and mortality in normoalbuminemic Japanese hemodialysis patients. Osteoporosis Int. 2011; 22: 1695–1701.
  • 44. Nishiura R., Fujimoto S., Sato Y. i wsp. Elevated osteoprotegerin levels predict cardiovascular events in new hemodialysis patients. Am. J. Nephrol. 2009; 29: 257–263.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-458af3be-c6f3-4c8b-b4d7-7fb3a06a4e47
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.