PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 141 | 24-47
Article title

On the nonlinear analysis of isotropic circular plate resting on viscoelastic foundation

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nonlinear analysis of isotropic circular plate resting on viscoelastic foundation is investigated. The dynamic analogue of Von Kármán equations is considered in establishing the governing equation also, consideration is given to symmetric and axisymmetric mode. Thereafter, the coupled nonlinear partial differential equations are transformed to Duffing equation using Galerkin method and analysed using Optimal Homotopy Asymptotic Method (OHAM). Subsequently, the analytical solutions are used to investigate the influence of various parameters on the dynamic response of the plate. It is observed that, nonlinear frequency ratio increases with increase linear Winkler, Pasternak foundation and tensile force. Nevertheless, it is established that the nonlinear frequency ratio of the plate decreases as nonlinear Winkler foundation and compressive force increase. Also, the results revealed that both clamped and simply supported edge condition results in softening nonlinearity behaviour. Conversely, axisymmetric case of vibration gives lower nonlinear frequency ratio compared to asymmetric case. Furthermore, maximum deflection occurs when excitation force is zero, likewise the presence of viscoelastic foundation results in attenuation of deflection for the circular plate. It is expected that findings from the study will add values to the existing knowledge of classical vibration.
Discipline
Year
Volume
141
Pages
24-47
Physical description
Contributors
  • Department of Civil and Environmental Engineering, University of Lagos, Akoka, Nigeria
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
References
  • [1] Chien R D, Chen C S (2005) Nonlinear vibration of laminated plates on a nonlinear elastic foundation. Compos. Struct. 70(1): 90–99
  • [2] Chien R D, Chen C S (2006) Nonlinear vibration of laminated plates on an elastic foundation. Thin Walled Struct. 44(8): 852–860
  • [3] Chen C S, Tan A H, Chien R D (2009) Nonlinear oscillations of orthotropic plates on a nonlinear elastic foundation. J. Reinf. Plast. Compos. 28(7): 851–867
  • [4] Ping Q, Xin-zhi W, Kai-yuan Y (2003) Bifurcation and chaos of the circular plates on the nonlinear elastic foundation. Appl. Math. Mech. 24(8):880–885
  • [5] Younesian D, Askari H, Saadatnia Z, Esmailzadeh E (2011) Analytical solutions for oscillation of rectangular plate on a nonlinear Winkler foundation. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 755–760
  • [6] Jain R, Nath Y (1986) Effect of foundation nonlinearity on the nonlinear transient response of orthotropic shallow spherical shells. Ing. Arch. 56(4): 295–300
  • [7] Winkler E (1867) Die Lehre von der Elasticitaet und Festigkei. Prag, Dominicus
  • [8] Younesian D, Hosseinkhani A, Askari H, Esmailzadeh E (2019) Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modelling and applications. Nonlinear Dynamic, 97: 853–895. doi.org/10.1007/s11071-019-04977-9
  • [9] Omurtag M H, Kadıoglu F (1998) Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation. Comput. Struct. 67(4): 253–265
  • [10] Kargarnovin M, Younesian D (2004) Dynamics of Timoshenko beams on Pasternak foundation under moving load. Mech. Res. Commun. 31(6): 713–723
  • [11] Herisanu N, Marinca V (2018) Free oscillations of Euler– Bernoulli beams on nonlinear Winkler–Pasternak foundation. In: Acoustics and Vibration of Mechanical Structures—AVMS-2017, 41–48.
  • [12] Liang X, Cao Z, Sun H, Zha X, Leng J (2019) Analytical and semi-analytical methods for the evaluation of dynamic thermo-elastic behavior of structures resting on a Pasternak foundation. J. Press. Vessel Technol. 141(1), 010908.
  • [13] Wang T, Stephens J (1977) Natural frequencies of Timoshenko beams on Pasternak foundations. J. Sound Vib. 51: 149– 155.
  • [14] Shen H S (1995) Post buckling of orthotropic plates on two parameter elastic foundation. J. Eng. Mech. 121(1): 50–56.
  • [15] Nardini D, Brebbia C (1983) A new approach to free vibration analysis using boundary elements. Appl. Math. Modell. 7(3): 157–162
  • [16] Atluri S, Han Z, Rajendran A (2004) A new implementation of the meshless finite volume method, through the MLPG “mixed” approach, CMES: Comput. Model. Eng. Sci. 6(6): 491–514
  • [17] Friswell M, Adhikari S, Lei Y (2007) Vibration analysis of beams with non-local foundations using the finite element method. Int. J. Numer. Methods Eng. 71(11): 1365–1386
  • [18] Civalek Ö, Korkmaz A, Demir Ç (2010) Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two opposite edges. Adv. Eng. Softw. 41(4): 557–560
  • [19] Aköz A, Kadioglu, F (1996) The mixed finite element solution of circular beam on elastic foundation. Comput. Struct. 60(4): 643–651
  • [20] Patel B, Ganapathi M, Touratier M (1999) Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two-parameter elastic foundation. Compos. Struct. 46(2): 189–196
  • [21] Kim N I, Seo K J, Kim M Y (2003) Free vibration and spatial stability of non-symmetric thin-walled curved beams with variable curvatures. Int. J. Solids Struct. 40(12): 3107–3128
  • [22] Baghani M, Jafari-Talookolaei R, Salarieh H (2011) Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation. Appl. Math. Modell. 35(1):130–138
  • [23] Ozturk B (2009) Free vibration analysis of beam on elastic foundation by the variational iteration method. Int. J. Nonlinear Sci. Numer. Simul. 10(10): 1255–1262
  • [24] Younesian D, Saadatnia Z, Askari H (2012) Analytical solutions for free oscillations of beams on nonlinear elastic foundations using the variational iteration method. J. Theor. Appl. Mech. 50(2):639–652
  • [25] Herisanu N, Marinca V, Dordea T, Madescu G (2008) A new analytical approach to nonlinear vibration of an electrical machine. Proc Rom. Acad. Ser A, 9 (3): 229-236.
  • [26] Zaidi Z A, Shahzad A (2013) Application of the optimal Homotopy asymptotic method for fins with variable temperature surface heat flux. World applied sciences journal 27(12): 1605-1613 doi: 10.5829/idosi.wasj.2013.27.12.2648
  • [27] Marinca V, Herisanu N (2008) Application of optimal Homotopy asymptotic method for solving nonlinear equations arising in heat transfer. International Communication in Heat and Mass Transfer, 35: 710-715.
  • [28] Marinca V, Herisanu N, Nemes L (2008) Optimal Homotopy asymptotic method with application to thin film flow. Central European Journal of Physics, 6 (3): 648-653.
  • [29] Marinca V, Herisanu N, Bota C, Marinca B V (2009). An optimal Homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate. Appl. Math. Lett. 22: 245-251.
  • [30] Von Kármán T (1910) Festigkeits probleme im Maschinenbau”, Encyklopadie der Mathematischen. Wissenschaftem. 4: 314–385.
  • [31] Touzé C, Thomas O, Chaigne A (2016) Asymmetric nonlinear forced vibrations of free-edge circular plates. Part 1: Theory. Journal of Sound and Vibration, 258 (4): 649-676. Doi. 10.1006/jsvi.2002.5143
  • [32] YamaKi N (1961) Influence of Large Amplitudes on flexural Vibrations of Elastic Plates 501 ZAMM. Journal of Applied Mathematics ad Mechaics/zeitschrift f& 252;r Agewandte Mathematik und Mechanik 41(12): 501-510.
  • [33] Dumir P C (1986) nonlinear vibration and post buckling of isotropic thin circular plates on elastic foundations. J Sound Vibration 107(2): 253-263. doi. 0022-460x/86/110253
  • [34] Kerr A.D., Elastic and viscoelastic foundation models, Journal of Applied Mechanics 1964, 31, 491-498.
  • [35] EI-Dib Y O (2018) Stability analysis of a strong displacement time-delayed duffing oscillator using multiple scales Homotopy perturbation method. Journal of Applied and Computational Mechanics 4(4): 260-274. doi:10.22055/JACM.2017.23591.1164
  • [36] Haterbouch M, Benamar R (2003) The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates, part I: iterative and explicit analytical solution for nonlinear transverse vibrations, Journal of Sound and Vibration, 265: 123-154. https://doi.org/10.1016/S0022-460X(02)01443-8
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-45785e71-f596-4192-9405-2cb5acc43043
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.