PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 113 | 64-77
Article title

Microbial Fuel Cell: Generating Electricity from Organic Waste – A Review

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the recent decades, there has been a huge energy demand due to the exponential increase of the human population and consequently, the depletion of non-renewable energy sources. This creates the need to explore alternate routes for renewable energy resources. Recently, the microbial fuel cell (MFC) technology is being considered a promising alternative due to their mild operating conditions and the ability to use variety of biodegradable substrates as fuel. This environment-friendly process converts chemical energy of organic waste into electricity through electroactive microbes. The review covers various aspects like the anodic/cathodic materials and select microbial/enzymatic electrochemical cathodic reactions. The critical review of different classes of wastes that can be employed for bio-energy generation, power output, challenges and the limitations are also described.
Year
Volume
113
Pages
64-77
Physical description
Contributors
author
  • Department of Applied Sciences, KIET Group of Institutions, Ghaziabad - 201206, India
  • Department of Electrical Engineering, KIET Group of Institutions, Ghaziabad - 201206, India
author
  • Department of Electrical Engineering, KIET Group of Institutions, Ghaziabad - 201206, India
References
  • [1] M. Rahimnejad, A.A. Ghoreyshi, G. Najafpour, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy 88 (2011) 3999–4004.
  • [2] F. Akdeniz, A. C. Ag lar, D. Gu llu, Recent energy investigations on fossil and alternative nonfossil resources in Turke. Energy Convers. Manage 43 (2002) 575–589.
  • [3] M. Rahimnejad, A. Ghoreyshi, G. Najafpour, H. Younesi, M. Shakeri, A novel microbial fuel cell stack energy for continuous production of clean energy. Int. J. Hydrogen Energy 37 (2012) 5992–6000.
  • [4] BP plc. Statistical Review of World Energy. London, United Kingdom, (June 2016).
  • [5] M.C. Potter, Electrical effects accompanying the decomposition of organic compounds. Proc. Royal Soc. London, Ser. B, Containing Pap. Biol. Charact. 84 (1911) 260–276.
  • [6] M.A. Moyad, Brewer's/baker's yeast (Saccharomyces cerevisiae) and preventive medicine: Part II. Urol Nurs. 28 (1) (2008) 73–75.
  • [7] B. Cohen. The Bacterial Culture as an Electrical Half-Cell. Journal of Bacteriology 21 (1931) 18-19.
  • [8] M. G. Del Duca, J. M. Friscoe, and R. W. Zurilla, Developments in Industrial Microbiology. American Institute of Biological Sciences 4 (1963) 81–84.
  • [9] Karube, T. Matasunga, S. Suzuki, S. Tsuru, Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochimicaet Biophysica Acta 24 (2) (1976) 338–343.
  • [10] Karube, T. Matsunaga, S. Tsuru, S. Suzuki, Biochemical cells utilizing immobilized cells of Clostridium butyricum. Biotechnology and Bioengineering 19 (11) (1977) 1727–1733.
  • [11] Bennetto, Electricity generation by microorganisms. Biotechnology Education 1(4) (1990) 163-168.
  • [12] M. Ghasemi, W. R. Wan, W. R. Ismail, M. Rahimnejad, A. F. Ismail, J. X. Leong, M. Miskan, K. Ben Liew, Effect of pretreatment and biofouling of proton exchange membrane on microbial fuel cell performance. Int. J. Hydrogen Energy 38 (2012) 5480–5484.
  • [13] G. Antonopoulou, K. Stamatelatou, S. Bebelis, G. Lyberatos, Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J.50 (2010) 10–15.
  • [14] M. Rahimnejad, G. Najafpour, A. A. Ghoreyshi, Effect of mass transfer on performance of microbial fuel cell. Intech 5 (2011) 233–250.
  • [15] G. Najafpour, M. Rahimnejad, A. Ghoreshi, The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Source 33 (2011) 2239–2248.
  • [16] M. Rahimnejad, N. Mokhtarian, G. Najafpour, W. Daud, A. Ghoreyshi. Low voltage power generation in abiofuel cell usinganaerobic cultures. World Appl. Sci. J. 6 (2009) 1585–1588.
  • [17] B.E. Logan, B. Hamelers, R. Rozendal, U. Schro der, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40 (2006) 5181–5192.
  • [18] V. Chaturvedi and P. Verma, Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and biooprocessing (2016) 3-38.
  • [19] H. P. Luo, G. L. Liu, R. D. Zhang, S. Jin, Comparison of power generation in microbial fuel cells of two different structures. Huan Jing KeXue 30(2) (2009) 621-624.
  • [20] G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, C. F. Thurston, Electron‐transfer coupling in microbial fuel cells: 2. Performance of fuel cells containing selected microorganism—mediator—substrate combinations. Journal of Chemical Technology and Biotechnology 34 (1) (1984) 13-27.
  • [21] Y. Sharma, B. Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technol. 101 (2010) 1844–1850.
  • [22] B. E. Logan, B. Hamelers, R. Rozendal, U. Schro der, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40 (2006) 5181–5192.
  • [23] H. V. M. Hamelers, D. PBTB Strik, J. F. H. Snel, C. J. N. Buisman, Device and method for converting light energy into electrical energy. United States US 20100190039A1, Pub. No.: US 2010/0190039 A1 Pub. Date: Jul. 29, 2010.
  • [24] M. Helder, D. PBTB Strik, H. V. M. Hamelers and C. J. N. Buisman, The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnology for Biofuels (2012) 5-70.
  • [25] C. I. Torres, R. K. Brown, P. Parameswaran, A. K. Marcus, G. Wanger, Y. A. Gorby, and B. E. Rittmann, Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization. Environmental Science and Technology 43 (24) (2009), 9519-9524.
  • [26] U. Schröder. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys.9 (2007), 2619-2629.
  • [27] Bergel. How could chemical engineering help in deciphering electromicrobial mechanisms, in Electro-Activity of Biological Systems. Book series: Bio Web, of Conferences, Raspaud, E., Marlière, C., Regeard, C., Cornut, R., Méallet-Renault, R. (Eds.), BIO Web of Conferences 6 (2016), 02005.
  • [28] Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, J. K. Fredrickson, Electrically conductive bacterial nanowires produced by Shewanellaoneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences 103 (30) (2006) 11358-11363.
  • [29] U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys.9 (2007) 2619-2629.
  • [30] B. E. Logan, B. H. René Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K.. Rabaey, Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology40 (17) (2006) 5181-5192.
  • [31] Baudler, S. Riedl, U. Schreoder, Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes. Front. Energy Res. 2 (2014) 30. https://doi.org/10.3389/fenrg.2014.00030
  • [32] T. Zhang, Y. Zeng, S. Chen, X. Ai, H. Yang, Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochem. Commun. 9 (2007) 349–353.
  • [33] Q. Deng, X. Li, J. Zuo, A. Ling, B.E. Logan, Power generation using an activated carbon fiber felt cathode in an up flow microbial fuel cell. J. Power Sources 195 (2009) 1130–1135.
  • [34] Ter Heijne, H. V. M. Hamelers, V. De Wilde, R. A. Rozendal, C .J. N. Buisman, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cell. Environ. Sci. Technol. 40 (2006) 5200–5205.
  • [35] M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy 88 (2011) 3999–4004.
  • [36] S. Durgesh, A review on microbial fuel cell using organic waste as feed. CIB Tech Journal of Biotechnology2 (2012) 17-22.
  • [37] D.Pant, G. V. Bogaert, L. D. K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology(2009) 10-17.
  • [38] K. P. Nevin, H. Richter, S. F. Covalla, J. P. Johnson, T. L. Woodard, A. L. Orloff, H. Jia, M. Zhang, D. R. Lovley, Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 10 (2008) 2505–2514.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-44993949-9a62-48c1-bc4e-e041a6b2510f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.