PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 50 | 49-63
Article title

Theoretical study of the effect the hydroxyl subgroups on the electronic properties of iso-indene molecule

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work, six molecules model are optimized at B3LYP/6-31G** density functional theory. Electronic properties of iso-indene molecules were investigated depending on the three parameters (B3LYP) by density functional theory method. The best geometry for all molecules were investigated at (6-31G**) basis sets. The total energies, energy gaps, ionization potentials, electron affinities and softness were calculated for the studied molecules. Adding the (OH) ion and Nitrogen, Sulfur atoms to the iso-indene molecules leads to decrease the energy gap and the hardness of the studied molecules. The IR-spectra shows the effect of adding the (OH) ion and Nitrogen, Sulfur atoms in the ring on the vibrations of the reference molecule, the electronic properties and IR spectrum for all molecules were investigated by Gaussian 03 program.
Discipline
Year
Volume
50
Pages
49-63
Physical description
Contributors
  • Physics Department-College of Science, Babylon University, Iraq
  • Physics Department-College of Science, Babylon University, Iraq
  • Physics Department-College of Science, Babylon University, Iraq
  • Department of Soil Science and Water Resources, College of Agriculture, University of Al-Qadisiyah, Iraq, iraq_moh_iraq@yahoo.com
References
  • [1] C. L. Tang, “Fundamentals of Quantum Mechanics for Solid State Electronics and Optics”, NY publishes, Ithaca, 2004.
  • [2] H. F. Hameka, “Quantum Mechanics: A Conceptual Approach”, Leiden University, John Wiley & Sons, Inc., 2004.
  • [3] A. Cox., “Introduction to Quantum Theory and Atomic Structure”, Lecture in Organic Chemistry, University of Oxford, 1995.
  • [4] [4] P. v. R. Schleyer, "Aromaticity (Editorial)", Chemical Reviews, 101 (2001) 1115-1118.
  • [5] G.A. Jeffery, W. Saenger, “Hydrogen Bonding in Biological structures”, Springer, Berlin, 1991.
  • [6] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Gamier, Solid State Common, 72 (1989) 381.
  • [7] R.D. Green, “Hydrogen Bonding by C-H groups” , Wiley-Inter-Science, New York, 1974.
  • [8] S. Scheiner, “Hydrogen Bonding: a Theoretical Perspective”, Oxford University Press, Oxford, 1974.
  • [9] G. R. Desiraju, T. Steiner, “The Weak Hydrogen Bond”, Oxford University Press, Oxford, 1997.
  • [10] A. T. Balaban, P. v. R. Schleyer and H. S. Rzepa, Crocker, Armit and Robinson, Chemical Reviews, 105 (2005) 3436-3447.
  • [11] K. Sadasivam, R. Kumaresan, “Computational and Theoretical Chemistry”, Journal of Energetic, 963 (2011) 227-235.
  • [12] P. Ravi, G. M. Gory, S. P. Tewari, and A. K. Sikder, Journal of Energetic Materials, 29 (2011) 209-227.
  • [13] K. J. Denniston, J. Topping and T. M. Dwyer, “General Organic and Biochemistry", 5th Edition, Towson University, 2007.
  • [14] K. Capelle,“A Bires Eye View of Density Functional Theory”, Department de Fisica, Univirsil de Sao Paulo, Caixa Postal, 2006.
  • [15] P. P. O. Ryan, “Density Functional Theory Modeling of Partial Oxidation in Millisecond Single-Gauze Reactors”, University of Minnesota, Department of Chemical Engineering and Materials Science, 2001.
  • [16] J. Frank, “Polarization Consistent Basis Sets: Estimating the Kohn-Sham Basis Set Limit”, J. Chem. Phys. 7372 (2002) 7372-7379.
  • [17] E. Min, K. S. Cheol, and B. Kieron, “Avoiding Unbound Anions in Density Functional Calculations”, Institute of Nano-Bio Molecular Assemblies, Department of Chemistry, USA publishes, 2011.
  • [18] C. Fiolhais, F. Nogueira and M. Marques, “A Primer in Density Functional Theory”, Die Deutsche Bibliothek publishes, Germany, 2003.
  • [19] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., “Gaussian 03”, Revision A.02, Gaussian, Inc., PA, Wallingford CT., 2009.
  • [20] E. R. Bittner, “Quantum Mechanics: Lecture Notes for Chemistry”, University of Houston, Department of Chemistry, 2003.
  • [21] H. M. Kampen, “Energy Level Alignment at Molecular Semiconductor/GaAs (100) Interaces: Where is the LUMO”, University of Chemnitz, Institut fur, Germany, 1999.
  • [22] T. Saito, “Inorganic Chemistry”, Kanagawa University, D. I. Men. publishes, 2004.
  • [23] C. E. Sharpe, “Inorganic Chemistry”, Pearson Education Limited, Second Edition, 2005.
  • [24] G. M. Tarr, “Inorganic Chemistry”, John Dalton publishes, Oxford, Third Edition, 1990.
  • [25] T. Tatsuo, N. Tanaka and Y. Koichi, “Density Functional Study on the Reactivity of Oxidized Aluminum Surfaces: Effects of Adsorbed Metallic Atoms (Au, Cu, Ti, V)”, J. Thin Solid Films 409 (2002) 66-73.
  • [26] L. Shenghua, H. Yang and J. Yuansheng, “Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles”, J. Molecular Sciences, 5 (2004) 13-34.
  • [27] A. H. Raheem, K. J. AL-Shejyri and D. E. Al-bermany, “Density Functional Theory Calculations For Methyl Benzene Molecules Group”, British Journal of Science, 5 (2012) 57-64.
  • [28] V. Subramanian, “Quantum Chemical Descriptors in Computational Medicinal Chemistry for Chemo informatics”, Central Leather Research Institute, Chemical Laboratory, 2005
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-44057263-962a-4fd8-89e7-e339b4731e4f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.