PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 39 | 2 | 151-187
Article title

Struktura i funkcje białka Klotho

Content
Title variants
EN
Structure and functions of Klotho protein
Languages of publication
PL
Abstracts
EN
Klotho gene was identified in 1997, and named after a Greek goddess Klotho, who spun the thread of life. The inactivation of Klotho gene in mice leads to a syndrome resembling aging, whereas the overexpression of Klotho extends their life span. Protein Klotho exists in two forms: membrane and secreted Klotho which play different functions. The highest expression of transmembrane form of Klotho is observed in the kidney and choroid plexus in the brain. The transmembran form of Klotho acts as a coreceptor for fibroblast growth factor 23 (FGF23) and regulates phosphate homeostasis band vitamin D metabolism. The secreted form of Klotho, which was detected in plasma, cerebrospinal fluid and urine functions as a humoral factor that regulates the activity of several ion channels, transporters, and growth factor receptors. Moreover, this form of Klotho protein can modify N-glycans of TRPV5 channel and regulate calcium homeostasis. The secreted Klotho can also inhibit the insulin and insulin-like growth factor 1 (IGF-1) pathways. Last data suggest that Klotho can act as a tumor supressor gene. The decrease of Klotho expression was observed in the breast, pancreas, stomach, colon, lung and cervical cancer. Moreover, the decrease of Klotho expression was correlated with the more aggressive phenotype of examined cancers. Downregulation of Klotho gene was associated with CpG hypermethylation of promoter region and histones deacetylation.
PL
Gen Klotho, odkryty został w roku 1997, a jego nazwa wywodzi się od imienia greckiej bogini Klotho, która przędła nić ludzkiego żywota. Myszy z inaktywowanym genem Klotho wykazują cechy przedwczesnego starzenia się, natomiast nadekspresja Klotho skutkuje wydłużeniem czasu ich życia. Białko Klotho występuje w dwóch formach - transbłonowej oraz sekrecyjnej, którym przypisuje się odmienne funkcje. Najwyższą ekspresję transbłonowej formy Klotho obserwuje się w nerkach i splotach naczyniówkowych komór mózgowych. Forma ta, funkcjonuje jako koreceptor dla czynnika wzrostu fibroblastów 23 (FGF23), który uczestniczy w utrzymywaniu homeostazy fosforanowej oraz regulacji metabolizmu witaminy D. Sekrecyjna postać białka, której obecność wykazano w osoczu, płynie mózgowordzeniowym oraz w moczu, funkcjonuje jako czynnik humoralny. Reguluje ona aktywność kanałów jonowych, transporterów błonowych, a także receptorów dla czynników wzrostu. Poprzez modyfikację N-glikanów kanałów TRPV5, Klotho sekrecyjne bierze udział w utrzymywaniu homeostazy jonów wapnia. Ponadto, sekrecyjna postać białka uczestniczy w hamowaniu szlaku insuliny/insulinopodobnego czynnika wzrostu. Ostatnie doniesienia sugerują, iż Klotho spełnia także rolę supresora procesu nowotworzenia. Obniżenie ekspresji genu Klotho wykazano m.in. w raku piersi, trzustki, żołądka, jelita grubego, płuc oraz w raku szyjki macicy. Spadek ekspresji genu Klotho skorelowany jest z bardziej agresywnym fenotypem badanych nowotworów. Wśród mechanizmów leżących u podstaw obniżenia ekspresji Klotho wyróżnia się m.in. hipermetylację wysp CpG w obrębie regionu promotorowego oraz deacetylację histonów.
Discipline
Year
Volume
39
Issue
2
Pages
151-187
Physical description
References
  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T i wsp. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 45-51.
  • Wang Y, Sun Z. Current understanding of Klotho. Ageing Res Rev. 2009; 8: 43 51.
  • Kurosu H, Kuro-o M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol. 2009; 299: 72-78.
  • Kuro-o M. Klotho and aging. Biochim Biophys Acta 2009; 1790: 1049-1058.
  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P i wsp. Suppression of aging in mice by the hormone Klotho. Science 2005; 309: 1829 1833.
  • Kuro-o M. Klotho and βKlotho. Adv Exp Med Biol. 2012; 728: 25-40.
  • Manya H, Akasaka-Manya K, Endo T. Klotho protein deficiency and aging. Geriatr Gerontol Int. 2010; 10 Suppl 1: 80-87.
  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998; 242: 626-630.
  • Kuro-o M. Klotho and aging process. Korean J Intern Med 2011; 26:113-122.
  • Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I i wsp. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun. 2011; 414: 557-562.
  • Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N i wsp. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004; 565: 143-147.
  • Huang CL. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 2010; 77: 855-860.
  • Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid
  • beta-glucuronides. J Biol Chem 2004; 279: 9777-9784.
  • Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M i wsp. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007; 117: 4003-4008.
  • Kamemori M, Ohyama Y, Kurabayashi M, Takahashi K, Nagai R, Furuya N. Expression of Klotho protein in the inner ear. Hear Res 2002; 171: 103-110.
  • Kuro-o M. Klotho. Pflugers Arch. 2010; 459:333-343.
  • Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007; 104: 19796-19801.
  • Lewin E, Olgaard K. Klotho, an important new factor for the activity
  • of Ca2+ channels, connecting calcium homeostasis, ageing and uraemia. Nephrol Dial Transplant 2006; 21: 1770-1772.
  • Dimke H, Hoenderop JG, Bindels RJ. Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J Physiol. 2011; 589: 1535 1542.
  • Hoenderop JG, Bindels RJ. Calciotropic and magnesiotropic TRP channels. Physiology (Bethesda) 2008; 23: 32-40.
  • Razzaque MS. Klotho and Na+,K+-ATPase activity: solving the calcium metabolizm dilemma? Nephrol Dial Transplant 2008; 23: 459-461.
  • van Abel M, Hoenderop JG, Bindels RJ. The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol. 2005; 371: 295-306.
  • Lu P, Boros S, Chang Q, Bindels RJ, Hoenderop JG. The β-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6. Nephrol Dial Transplant 2008; 23: 3397-3402.
  • Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The β-Glucuronidase Klotho hydrolyzes and activates the TRPV5 channel. Science 2005; 310: 490-493.
  • Huang CL, Moe OW. Klotho: a novel regulator of calcium and phosphorus homeostasis. Pflugers Arch. 2011; 462: 185-193.
  • Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 2008; 105: 9805-9810.
  • Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A i wsp. α-Klotho as a regulator of calcium homeostasis. Science. 2007; 316: 1615-1618.
  • Nabeshima Y, Imura H. α-Klotho: a regulator that integrates calcium homeostasis. Am J Nephrol 2008; 28: 455-464.
  • Bartke A. Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging. Trends Endocrinol Metab. 2006; 17: 33-35.
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806.
  • Krześlak A. Kinaza Akt: kluczowy regulator metabolizmu i progresji nowotworów. Postępy Hig Med Dośw. 2010; 64: 490-503.
  • Kaletsky R, Murphy CT. The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis Model Mech. 2010; 3: 415-419.
  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E i wsp. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001; 292: 104-106.
  • Rincon M, Rudin E, Barzilai N. The insulin/IGF-1 signaling in mammals and its relevance to human longevity. Exp Gerontol. 2005; 40: 873-877.
  • Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003; 299: 1346-1351.
  • Brown-Borg HM. Hormonal regulation of longevity in mammals. Ageing Res Rev. 2007; 6: 28-45.
  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC i wsp. IGF 1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003; 421: 182-187.
  • Gattineni J, Bates C, Twombley K, Dwarakanath V, L. Robinson M, Goetz R i wsp. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009; 297: F282-F291.
  • Amatschek S, Haller M, Oberbauer R. Renal phosphate handling in human – what can we learn from hereditary hypophosphataemias? Eur J Clin Invest. 2010; 40: 552-560.
  • Perwad F, Portale A. Vitamin D metabolism in the kidney: Regulation by phosphorus and fibroblast growth factor 23. Mol Cell Endocrinol. 2011; 347: 17-24.
  • Mazzaferro S, Pasquali M, Pirrò G, Rotondi S, Tartaglione L. The bone and the kidney. Arch Biochem Biophys. 2010; 503: 95-102.
  • Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L i wsp. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010; 24: 2050-2064.
  • Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV i wsp. Molecular insights into the Klotho-dependent, endocrine mode of action of FGF19 subfamily members. Mol Cell Biol 2007; 27: 3417-3428.
  • Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV i wsp. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure. 2012; 20: 77-88.
  • Yie J, Wang W, Deng L, Tam LT, Stevens J, Chen MM, i wsp. Understanding the physical interactions in the FGF21/FGFR/β-Klotho complex: structural requirements and implications in FGF21 signaling. Chem Biol Drug Des. 2012; 79: 398-410.
  • Wu X, Lemon B, Li X, Gupte J, Weiszmann J, Stevens J, i wsp. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J Biol Chem. 2008; 283: 33304-33309.
  • Prie D, Friedlander G. Reciprocal Control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho system. Clin J Am Soc Nephrol 2010; 5: 1717-1722.
  • Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 2010; 299: F882-F889.
  • Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, i wsp. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24: 3438-3450.
  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP i wsp. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. 2006; 281: 6120-6123.
  • Medici D, Razzaque MS, Deluca S, Rector TL, Hou B, Kang K i wsp. FGF 23 Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J Cell Biol. 2008; 182: 459-465.
  • Gattineni J, Bates C, Twombley K, Dwarakanath V, L. Robinson M, Goetz R i wsp. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009; 297: F282-F291.
  • Amatschek S, Haller M, Oberbauer R. Renal phosphate handling in human – what can we learn from hereditary hypophosphataemias? Eur J Clin Invest. 2010; 40: 552-560.
  • Perwad F, Portale A. Vitamin D metabolism in the kidney: Regulation by phosphorus and fibroblast growth factor 23. Mol Cell Endocrinol. 2011; 347: 17-24.
  • Mazzaferro S, Pasquali M, Pirrò G, Rotondi S, Tartaglione L. The bone and the kidney. Arch Biochem Biophys. 2010; 503: 95-102.
  • Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L i wsp. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010; 24: 2050-2064.
  • Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV i wsp. Molecular insights into the Klotho-dependent, endocrine mode of action of FGF19 subfamily members. Mol Cell Biol 2007; 27: 3417-3428.
  • Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV i wsp. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure. 2012; 20: 77-88.
  • Yie J, Wang W, Deng L, Tam LT, Stevens J, Chen MM, i wsp. Understanding the physical interactions in the FGF21/FGFR/β-Klotho complex: structural requirements and implications in FGF21 signaling. Chem Biol Drug Des. 2012; 79: 398-410.
  • Wu X, Lemon B, Li X, Gupte J, Weiszmann J, Stevens J, i wsp. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J Biol Chem. 2008; 283: 33304-33309.
  • Prie D, Friedlander G. Reciprocal Control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho system. Clin J Am Soc Nephrol 2010; 5: 1717-1722.
  • Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 2010; 299: F882-F889.
  • Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, i wsp. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24: 3438-3450.
  • Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C i wsp. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res. 2011; 17: 4254 4266.
  • Wang L, Wang X, Wang X, Jie P, Lu H, Zhang S, i wsp. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011; 1: 111-119.
  • Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, i wsp. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008; 27: 7094-7105.
  • Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A i wsp. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat. 2012; 133: 649-657.
  • Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H i wsp. Klotho predicts good clinical outcome in patients with limited-disease small cell lung cancer who received surgery. Lung Cancer. 2011; 74: 332-337.
  • Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H i wsp. Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer. 2011; 72: 355-359.
  • Pan J, Zhong J, Gan LH, Chen SJ, Jin HC, Wang X, Wang LJ. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol. 2011; 32: 729-735.
  • Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, i wsp. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010; 9: 109.
  • Kharaishvili G, Simkova D, Makharoblidze E, Trtkova K, Kolar Z, Bouchal J. Wnt signaling in prostate development and carcinogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011; 155: 11-18.
Document Type
paper
Publication order reference
YADDA identifier
bwmeta1.element.psjd-43d1410e-2546-4f2f-9aaf-9a71a849862e
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.