Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 63 | 4 | 27-38

Article title

Activation energy of viscous flow for some globular and non-globular proteins obtained from viscosity measurements and modified Arrhenius equation

Authors

Content

Title variants

PL
Energia aktywacji przepływu lepkiego dla kilku globularnych i nieglobularnych białek otrzymana z pomiarów lepkości i zmodyfikowanego równania Arrheniusa

Languages of publication

EN

Abstracts

EN
BACKGROUND: The aim of the present paper was investigation of the temperature dependence of the activation energy of viscous fl ow for some proteins in aqueous solutions. MATERIAL AND METHODS: The viscosity of hen egg-white lysozyme, bovine 􀈕-lactoglobulin, and human, bovine and porcine IgG immunoglobulin aqueous solutions was measured at temperatures ranging from 5oC to 55oC and in a wide range of concentrations. The measurements were performed with an Ubbelohdetype capillary microviscometer. RESULT S : The average value of the activation energy of viscous fl ow ΔE can be experimentally obtained from the slope of the line that represents the dependence of the liquid viscosity η (in logarithmic scale) versus a reciprocal of the absolute temperature (T-1). The functional dependence of ΔE on temperature can be obtained from strict defi nition ΔE = R[dlnη/d(T-1)], where R is the gas constant and from a three parameters modifi ed Arrhenius formula which gives an analytical function describing the viscosity-temperature dependence for proteins solutions in a wide range of temperatures. As appears, ΔE obtained in such a way decreases with increasing temperature according to a square function. The parameters of this function have been obtained for all studied proteins. CONCLUSIONS: The obtained results show that square function describes the temperature dependence of ΔE both for water, solutions and proteins themselves. One of the main factor which infl uence the activation energy is a molecular mass of protein. However, the results obtained for the studied immunoglobulins IgG show that this factor is not the only one.
PL
WSTĘP: Celem niniejszej pracy było zbadanie temperaturowej zależności energii aktywacji przepływu lepkiego dla kilku białek w roztworach wodnych. MATERIAŁ I METODY: Lepkość wodnych roztworów lizozymu jaja kurzego, β-laktoglobuliny bydlęcej oraz ludzkiej, bydlęcej i świńskiej immunoglobuliny IgG zmierzono w zakresie temperatur od 5oC do 55oC i w szerokim zakresie stężeń. Pomiary wykonano przy pomocy kapilarnego mikrowiskozymetru typu Ubbelohde’a. WYNIKI: Średnią wartość energii aktywacji przepływu lepkiego ΔE można doświadczalnie otrzymać z nachylenia prostej przedstawiającej zależność lepkości cieczy η (w skali logarytmicznej) od odwrotności temperatury bezwzględnej (T-1). Funkcyjną zależność ΔE od temperatury można otrzymać z dokładnej definicji ΔE = R[dlnη/d(T-1)], gdzie R jest stałą gazową oraz z trójparametrycznego zmodyfi kowanego równania Arrheniusa, które daje analityczną funkcję opisującą temperaturową zależność lepkości dla roztworów białek w szerokim zakresie temperatur. Jak się okazuje, ΔE otrzymana w ten sposób maleje ze wzrostem temperatury zgodnie z funkcją kwadratową. Parametry tej funkcji zostały wyznaczone dla wszystkich badanych białek. WNIOSKI: Otrzymane wyniki pokazują, że funkcja kwadratowa opisuje temperaturową zależność ΔE zarówno dla wody, roztworów jak i samych białek. Jednym z głównych czynników wpływających na energię aktywacji jest masa molowa białka. Jednakże, wyniki otrzymane dla badanych immunoglobulin IgG pokazują, że nie jest to czynnik jedyny.

Discipline

Year

Volume

63

Issue

4

Pages

27-38

Physical description

Contributors

author
  • Department of Biophysics, Medical University of Silesia, Zabrze, Poland Katedra i Zakład Biofizyki SUM, 41-808 Zabrze 8, ul. H. Jordana 19; tel. 32 272 20 41 /236, fax 32 272 01 42

References

  • 1. Squire P.G., Himmel M.E. Hydrodynamics and protein hydration. Arch. Biochem. Biophys. 1979; 196: 165-177.
  • 2. Smith L.J., Sutcliff e M.J., Redfi eld C., Dobson C.M. Structure of hen lysozyme in solution. J. Mol. Biol. 1993; 229: 930-944.
  • 3. Monkos K. Concentration and temperature dependence of viscosity in lysozyme aqueous solutions. Biochem. Biophys. Acta 1997; 1339: 304-310.
  • 4. Blanch E.W., Morozowa-Roche L.A., Hecht L., Noppe W., Barron L.D. Raman optical activity characterization of native and molten globule states of equine lysozyme: comparison with hen lysozyme and bovine α-lactalbumin. Biopolymers 2000; 57: 235-248.
  • 5. Smyth E., Syme C.D., Blanch E.W., Hecht L., Vasak M., Barron L.D. Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 2001; 58: 138-151.
  • 6. Yokoyama K., Kamei T., Minami H., Suzuki M. Hydration study of globular proteins by microwave dielectric spectroscopy. J. Phys. Chem. B 2001; 105: 12622- 12627.
  • 7. Oreccini A., Paciaroni A., Bizzarri A.R., Cannistraro S. Low-frequency vibrational anomalies in β-lactoglobulin: contribution of diff erent hydrogen classes reveiled by inelastic neutron scattering. J. Phys. Chem. B 2001; 105: 12150-12156.
  • 8. Kuwata K., Li H., Yamada H., Batt C.A., Goto Y., Akasaka K. High pressure NMR reveals a variety of fl uctuating conformers in β-lactoglobulin. J. Mol. Biol. 2001; 305: 1073-1083.
  • 9. Kuwata K., Hoshino M., Era S., Batt C.A., Goto Y. α → β transition of β-lactoglobulin as evidenced by heteronuclear NMR. J. Mol. Biol. 1998; 283: 731-739.
  • 10. Kuwajima K., Yamaya H., Sugai S. The burst-phase intermediate in the refolding of β-lactoglobulin studied by stopped-fl ow circular dichroism and absorption spectroscopy. J. Mol. Biol. 1996; 264: 806-822.
  • 11. Relkin P. Reversibility of heat-induced sol-gel state transition. Int. J. Biol. Macromol. 1998; 22: 59-66.
  • 12. Fessas D., Iametti S., Schiraldi A., Bonomi F. Thermal unfolding of monomeric and dimeric β-lactoglobulins. Eur. J. Biochem. 2001; 268: 5439-5448.
  • 13. Rogers S.S., Venema P., van der Ploeg J.P.M., van der Linden E., Sagis L.M.C., Donald A.M. Investigating the permanent electric dipole moment of β-lactoglobulin fi brils, using transient electric birefringence. Biopolymers 2006; 82: 241-252.
  • 14. Monkos K. On the hydrodynamics of gimeric bovine 14. Monkos K. On the hydrodynamics of gimeric bovine β-lactoglobulin solutions from viscometry approach. Polish J. Environm. Stud. 2006; 15: 88-90.-lactoglobulin solutions from viscometry approach. Polish J. Environm. Stud. 2006; 15: 88-90.
  • 15. Monkos K. Analysis of the viscositytemperature- concentration dependence for dimeric bovine β-lactoglobulin aqueous solutions on the basis of the Vogel-Tammann- Fulcher’s equation. Curr. Top. Biophys. 2008; 31: 16-24.
  • 16. Goodman J.W. Immunoglobulin structure and function, in: Stites D.P., Terr A.I. (Eds.), Basic and clinical immunology. 1991; Prentice Hall, pp. 109-121.
  • 17. Al-Lazikani B., Lesk A.M., Chothia C. Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 1997; 273: 927-948.
  • 18. Saphire E.O., Stanfi eld R.L., Crispin M.D.M., Parren P.W.H.I., Rudd P.M., Dwek R.A., Burton D.R., Wilson I.A. Contrasting IgG structures reveal extreme asymmetry and fl exibility. J. Mol. Biol. 2002; 319: 9- 18.
  • 19. Garcia de la Torre J. Hydrodynamics of segmentally fl exible macromolecules. Eur. Biophys. J. 1994; 23: 307-322.
  • 20. Diaz F.G., Iniesta A., Garcia de la Torre J. Hydrodynamic study of fl exibility in immunoglobulin IgG1 using Brownian dynamics and the Monte Carlo simulations of a simple model. Biopolymers 1990; 30: 547-554.
  • 21. Perkins S.J., Ashton A.W., Boehm M.K., Chamberlain D. Molecular structures from low angle X-ray and neutron scattering studies. Int. J. Biol. Macromol. 1998; 22: 1-16.
  • 22. Monkos K., Turczynski B. A comparative study on viscosity of human, bovine and pig IgG immunoglobulins in aqueous solutions. Int. J. Biol. Macromol. 1999; 26: 155-159
  • 23. Monkos K. A viscosity of the solution conformation and stiff ness of some IgG immunoglobulins. Polish J. Med. Phys. & Eng. 2001; 7: 47-52.
  • 24. Young E.G. Occurrence, classifi cation, preparation and analysis of proteins, in: Florkin M., Stolz E.H. (Eds.), Comprehensive biochemistry. 1963; Amsterdam, pp. 22.
  • 25. Roth S., Murray B.S., Dickinson E. Interfacial shear rheology of aged and heattreated β-lactoglobulin fi lms: Displacement by nonionic surfactant. J. Agric. Food Chem. 2000; 48: 1491-1497.
  • 26. Yoshioka S., Aso Y., Kojima S. Softening temperature of lyophilized bovine serum albumin and ɣ-globulin as measured by spin-spin relaxation time of protein protons. J. Pharm. Sci. 1997; 86: 470- 474.
  • 27. Aymard P., Durand D., Nicolai T. The eff ect of temperature and ionic strength on the dimerisation of β-lactoglobulin. Int. J. Biol. Macromol. 1996; 19: 213-221.
  • 28. Lopez da Silva J.A., Gonçalves M.P., Rao M.A. Infl uence of temperature on the dynamics and steady-shear rheology of pectin dispersions. Carbohydr. Polym. 1994; 23: 77-87.
  • 29. Jauregui B., Muńoz M.E., Santamaria A. Rheology of hydroxyethylated starch aqueous systems. Analysis of gel formation. Int. J. Biol. Macromol. 1995; 17: 49-54.
  • 30. de Paula R.C.M., Rodrigues J.F. Composition and rheological properties of cashew tree gum, the exudates polysaccharide from Anacardium occidentale L. Carbohydr. Polym. 1995; 26: 177-181.
  • 31. Kar F., Arslan N. Eff ect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity – molecular weight relationship. Carbohydr. Polym. 1999; 40: 277-284.
  • 32. de Vasconcelos C.L., de Azevedo F.G., Pereira M.R., Fonseca J.L.C. Viscosity-temperature- concentration relationship for starch-DMSO-water solutions. Carbohydr. Polym. 2000; 41: 181-184.
  • 33. Desbrieres J. Viscosity of semifl exible chitosan solutions: Infl uence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules 2002; 3: 342-349.
  • 34. Durand A. Aqueous solutions of amphiphilic polysaccharides: Concentration and temperature eff ect on viscosity. Eur. Polym. J. 2007; 43: 1744-1753.
  • 35. Tiff any J.M., Koretz J.F. Viscosity of alpha- crystallin solutions. Int. J. Biol. Macromol. 2002; 30: 179-185.
  • 36. Knoben W., Besseling N.A.M., Cohen Stuart M.A. Rheology of a reversible supramolecular polymer studied by comparison of the eff ects of temperature and chain stoppers. J. Chem. Phys. 2007; 126: 024907.
  • 37. Gun’ko V.M., Goncharuk E.V., Nechypor O.V., Pakhovchishin S.V., Turov V.V. Integral equation for calculation of distribution function of activation energy of shear viscosity. J. Colloid Interface Sci. 2006; 304: 239-245.
  • 38. Hayakawa E., Furuya K., Kuroda T., Moriyama M., Kondo A. Viscosity study on the self-association of doxorubicin in aqueous solution. Chem. Pharm. Bull. 1991; 39: 1282-1286.
  • 39. Bourret E., Ratsimbazafy V., Maury L., Brossard C. Rheological behavior of saturated polyglycolysed glycerides. J. Pharm. Pharmcol. 1994; 46: 538-541.
  • 40. Kamimura Y., Kurumada K., Asaba K., Ban-no H., Kambara H., Hiro M. Evaluation of activation energy of viscous fl ow of sol-gel derived phenyl-modifi ed silica Glass. J. Non-Cryst. Solids 2006; 352: 3175-3178.
  • 41. Magerramov M.A., Abdulagatov A.I., Azizov N.D., Abulagatov I.M. Eff ect of temperature, concentration, and pressure on the viscosity of pomegranate and pear juice concentrates. J. Food Engn. 2007; 80: 476-489.
  • 42. Vinogradov G.V., Malkin A.Ya. Rheology of polymers. 1980, Mir, Moscow.
  • 43. Monkos K. Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int. J. Biol. Macromol. 1996; 18: 61-68.
  • 44. Monkos K. Concentration and temperature dependence of viscosity in lysozyme aqueous solutions. Biochim. Biophys. Acta 1997; 1339: 304-310.
  • 45. Monkos K. Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin. Biophys. Chem. 2000; 85: 7-16.
  • 46. Monkos K. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim. Biophys. Acta 2004; 1700: 27-34.
  • 47. Monkos K. A comparison of solution conformation and hydrodynamic properties of equine, porcine and rabbit serum albumin using viscometric measurements. Biochim. Biophys. Acta 2005; 1748: 100-109.
  • 48. Zimmerman S.B., Minton A.P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 1993; 22: 27-65.
  • 49. Yokoyama K., Kamei T., Minami H., Suzuki M. Hydration study of globular proteins by microwave dielectric spectroscopy. J. Phys. Chem. B 2001; 105: 12622- 12627.
  • 50. Kabir S.R., Yokoyama K., Mishashi K., Kodama T. Suzuki M. Hyper-mobile water is induced around actin fi laments. Biophys. J. 2003; 85: 3154-3161.
  • 51. Harding S.E. The hydration problem in solution biophysics: an introduction. Biophys. Chem. 2001; 93: 87-91.
  • 52. Pérez J., Zanotti J-M., Durand D. Evolution of the internal Dynamics of two globular proteins from dry powder to solution. Biophys. J. 1999; 77: 454-469.
  • 53. Monkos K. Temperature dependence of the activation energy of viscous fl ow for ovalbumin in aqueous solutions. Curr. Top. Biophys. 2007; 30: 29-33.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-43adb071-3933-439f-a072-045fc12921ac
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.