Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 19 | 5-14

Article title

APPLICATION OF CROSS-LINKED CHITOSAN FOR PHOSPHATE REMOVAL FROM AQUEOUS SOLUTIONS

Content

Title variants

Languages of publication

EN EN

Abstracts

EN
This study investigated the effectiveness of phosphate adsorption onto non-cross-linked chitosan beads [CHs], and onto chitosan beads cross-linked with glutaraldehyde [ALD-CHs] and epichlorohydrin [ECH-CHs]. The weight ratio of glutaraldehyde to chitosan was 1:2 (w/w), whereas that of epichlorohydrin to chitosan was 2:1 (w/w). The optimal pH value of the phosphate adsorption process was determined at pH 3 for cross-linked chitosan and at pH 4 for noncross- linked chitosan. The time needed to reach the equilibrium concentration reached 60 min for both adsorbents. Experimental data were described with the heterogeneous Langmuir model (double Langmuir equation). The most effective adsorbent of phosphates was shown to be chitosan cross-linked with epichlorohydrin [ECH-CHs] - for which the adsorption capacity reached 139.4 mg/g d.m.CHs. In the case of the remaining adsorbents (chitosan [CHs] and chitosan crosslinked with glutaraldehyde [ALD-CHs]) the adsorption capacity was lower and accounted for 44.38 mg/g d.m.CHs and 108.24 mg/g d.m.CHs, respectively.

Contributors

  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn

References

  • 1. Biswas B.K., Inoue K., Ghimire K.N., Ohta S., Harada H., Ohto K., Kawakita H.; (2007) The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. J. Colloid Interf. Sci., 312, 214–223, DOI:10.1016/j.jcis.2007.03.072
  • 2. Irdemez S., Demircioglu N., Yildiz Y.S.; (2006) The effects of pH on phosphorus removal from wastewater by electrocoagulation with iron plate electrodes. Journal of Hazardous Materials, 137 (2), 1231–1235, DOI: 10.1016/j.jhazmat.2006.04.019
  • 3. Irdemez S., Demircioglu N., Yildizet Y.S., Bingul Z.; (2006) The effects of current density and phosphorus concentration on phosphorus removal from wastewater by electrocoagulation using aluminum and iron plate electrodes. Separation and Purification Technology, 52, 218–223, DOI:10.1016/j.seppur. 2006.04.008
  • 4. Tran N., Drogui P., Blais J., Mercier G.; (2012) Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment. Separation and Purification Technology 95, 16–25, DOI: 10.1016/ j.seppur.2006.04.014
  • 5. Jellali S., Wahaba M. A. , Hassineb R. B., Hamzaouic A. H., Bousselmia L.; (2011) Adsorption characteristics of phosphorus from aqueous solutions onto phosphatemine waste. Chemical Engineering Journal 169, 157–165, DOI: 10.1016/ j.cej.2011.02.076
  • 6. Janoš P., Kopecká A., Hejda S.; (2011) Utilization of waste humate product (iron humate) for the phosphorus removal from Walters. Desalination, 265, 88–92; DOI: 10.1016/j.desal.2010.07.036
  • 7. Baldy V., Trémoličres M., Andrieu M., Belliard J.; (2007) Changes in phosphorus content of two aquatic macrophytes according to water velocity, trophic status and time period in hard water streams. Hydrobiologia, 575, 343–351; DOI 10.1007/s10750-006-0380-0
  • 8. Rozporządzenie Ministra Środowiska z dnia 24 lipca 2006 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego
  • 9. De-Bashan L.E., Bashana Y.; (2004) Recent advances in removing phosphorus from wastewater and its future use as fertiliser (1997–2003). Water Research 38, 4222–4246, DOI:10.1016/j.watres.2004.07.014
  • 10. Karapınar N.; (2009) Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. Journal of Hazardous Materials, 170, 1186–1191, DOI:10.1016/j.jhazmat.2009.05.094
  • 11. Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D.; (1999) A review of potentially low-cost sorbents for heavy metals. Water Research, 33 (11), 2469–2479
  • 12. Je J., Kim S.; (2006) Antimicrobial action of novel chitin derivative. Biochimica et Biophysica Acta – General Subjects ,1760, 104–109
  • 13. Rzodkiewicz B., Piotrowska A.; (1999) Możliwości i ograniczenia wykorzystania ubocznych produktów przemysłu. Magazyn Przemysłu Rybnego, 10, 33–35
  • 14. Hasana M., Ahmada A.L., Hameed B.H.; (2008) Adsorption of reactive dye onto cross-linked chitosan/ oil palm ash composite beads. Chemical Engineering Journal, 136, 164–172, DOI: 10.1016/j. cej.2007.03.038
  • 15. Lausa R., Costaa T., Szpoganicza B., Fávere V.T.; (2010) Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan cross-linked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials 11, 233–41, DOI: 10.1016/j.jhazmat.2010.07.016
  • 16. Chiou M.S., Ho P.Y, Li H.Y.; (2004) Adsorption of anionic dyes in acid solutions using chemically crosslinked chitosan beads, Dyes Pigments 60, 69–84, DOI:10.1016/S0143-7208(03)00140-2
  • 17. Chiou M.S., Ho P.Y., Li H.Y.; (2003) Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50, 1095–1105
  • 18. Wu F.C., Tseng R.L., Juang R.S.; (2001) Enhanced abilities of highly swollen chitosan beads for colour removal and tyrosinase immobilisation. Journal of Hazardous Materials 81, 167–177
  • 19. Filipkowska U., Jóźwiak T.; (2013) Application of chemically-cross-linked chitosan for the removal of Reactive Black 5 and Reactive Yellow 84 dyes from aqueous solutions. Journal of Polymer Engineering, 33 (8), 735-747, DOI: 10.1515/polyeng-2013-0166
  • 20. Singh K.K., Talat M., Hasan S.H.; (2006) Removal of lead from aqueous solutions by agriculture waste maize bran. Bioresour. Technol. 97, 2124–2130, DOI:10.1016/j.biortech.2005.09.016
  • 21. Wan Ngah W.S., Ghani S.A., Kamari A.; (2005) Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96, 443–450, DOI:10.1016/j.biortech.2004.05.022
  • 22. Wan Ngah W.S., Kamari A., Koay. Y.J.; (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosanand chitosan/PVA beads. Int. J. Biol. Macromol. 34, 155–161, DOI:10.1016/j.biortech. 2004.05.022
  • 23. Filipkowska U., Jóźwiak T., Rodziewicz J., Kuciejewska J.; (2013) Zastosowanie kiszonki z kukurydzy Zea Mays L. do usuwania barwników z roztworów wodnych. Rocznik Ochrona Środowiska, Tom 15, 2324–2338
  • 24. Machida M, Kikuchi Y, Aikawa M, Tatsumoto H; (2004) Kinetics of adsorption and desorption of Pb(II) in aqueous solutions on activated carbon by two-site adsorption model. Colloid Surface A: Physicochem. Eng. Aspects 240, 179–186, DOI:10.1016/j.colsurfa.2004.04.046
  • 25. Wang S, Zhu ZH; (2005) Sonochemical treatment of fly ash for dye removal from wastewater. Journal of Hazardous Materials 126, 91–95, DOI:10.1016/j.jhazmat.2005.06.009
  • 26. Moharami S., Jalali M.; (2013) Removal of phosphorus from aqueous solution by Iranian natural adsorbents. Chemical Engineering Journal 223, 328–339, DOI: 10.1016/j.cej.2013.02.114
  • 27. Zhang Q., Deng S., Yu G., Huang J.; (2011) Removal of perfluorooctane sulphonate from aqueous solution by cross-linked chitosan beads: Sorption kinetics and uptake mechanism. Bioresource Technology Vol. 102, 2265–2271, DOI: 10.1016/j.biortech.2010.10.040
  • 28. Wong Y.C., Szeto Y.S., Cheung W.H., McKay G.;(2004) Adsorption of acid dye on chitosan — equilibrium isotherm analyses. Process Biochemistry, 39, 693–702, DOI:10.1016/S0032-9592(03)00152-3

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4323b568-b849-4b93-9b81-83f53cde71a3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.