PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 101 | 89-107
Article title

Approximate Bound State Solution of Relativistic Klein-Gordon Particles with Physical Potentials

Content
Title variants
Languages of publication
EN
Abstracts
EN
This dissertation presents an Approximate Bound State Solution of Relativistic Klein-Gordon Particles with Physical Potentials. We have solved the approximate bound state solution of the Klein-Gordon equation for unequal scalar and vector Hulthen potentials and Modified Hellmann plus Hylleraas potential for arbitrary l – state. We have used the parametric generalization of the Nikiforov-Uvarov method to obtain the bound state energy eigenvalues and the corresponding wave function expressed in term of the Jacobi Polynomials. The energy eigenvalue for these two potentials were computed using different screening parameter and the numerical variation of these potentials with the radial distance between the interacting particles are shown in Table 3 and 4. The approximation scheme used in this work were compared with the centrifugal term and observed that the approximation is preferred for small screening parameters, showing that these potential are short range.
Discipline
Year
Volume
101
Pages
89-107
Physical description
References
  • [1] Amlan K. Roy, Abraham F. Jalbout, Emil I. Proynov (2013) Accurate Calculation of the bound state of Hellmann Potential.arXiv:1307.2983v1 [quant-ph]11Jul2013.
  • [2] Antia A.D., Ikot A.N., Ituen E.E. and Akpan I.O., (2012), Bound state of the Klein-Gordon equation for deformed Hulthen potential with position dependent mass, Sri Lankan J. of Phys. Vol. 13(1) 27-40
  • [3] Alhaidari A.D. (2001), Relativistic extension of shape – invariant potentials, J. Phys. A: Math. Gen. 34, 9827
  • [4] Berkdemir C., Berkdemir A. and Sever R. (2006), Systematical Approach to the Exact solution of the Dirac Equation for A special form of the Woods – Saxon potential, Phys. A: Math. Gen. 399, 13455
  • [5] Cheng Y.F. and Dai T.O., (2007). Exact solution of the Klein – Gordon Equation with a Ring – shape modified Kratzer potential, Chin. J. Phys. 45, 480 – 487
  • [6] Ciftcim H. Hall R.L. and Saad N. (2003), Asymptotic iteration method for eigenvalue problems, J. Phys. A. 36, 11807.
  • [7] Diao Y.F., Yi L.Z. and Jia C.S., (2004), Bound states of the Klein – Gordon equation with Vector and Scalar five – parameter exponential – type potentials, Phys. Lett. A 332, 157
  • [8] Hott M and De Souza Detra A. (2006), Dirac equation exact solutions for generalized asymmetrical Hartmann Potentials, Phys. Lett A 356, 215
  • [9] Ikot A.N., Ibanga E.J., Awoga A.O., and Akpabio L.E. (2012), Solutions of Schrödinger equation with generalized inverted hyperbolic potential, J. of Modern Phys. 3, 1849-1855
  • [10] Ikot A.N., Udoimuk A.B. and Akpabio L.E. (2011), Bound states solution of Klein-Gordon equation with typel equal vector and scalar poschl-Teller potential for arbitrary l-state, Am. J. Sci. Ind. Res. 2, 179-183
  • [11] Ikot A.N, Awoga O.A, Anti A.D. (2013). Bound state solutions of d-dimensional Schrondinger equation with Eckart potential plus modified deformed Hylleraas potential, Chin. Phys. B Vol. 22, No. 2 020304
  • [12] Ikhadair S. and Sever R. (2008), Solution of the D – dimensional Klein-Gordon equation with equal scalar and Vector ring – shaped pseudo harmonic potential, Int. J. Mod. Phys. C 19, 1425
  • [13] Jia C.S., Gao P. and Peng X.L. (2006), Exact solution of the Dirac – Eckart problem with spin and pseudospin symmetry, J. Phys. A: Math. Gen. 39, 7737
  • [14] Oyewumi K.J. and Akoshile C.O. (2010), Bound State solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry, Eur. Phys. J. A 45, 311-318.
  • [15] Qiang W.C. (2004), Bound State of the Klein-Gordon and Dirac equations for potentials, Chin. Phys. 13, 575
  • [16] Xu Y., He S. and Jia C.S., (2010), Approximate analytical solutions of the Klein – Gordon equation with the Poschl – Teller potential including the centrifugal term, Phys. Scripta 81, 045001
  • [17] Zhang X.C., Liu Q.W., Jia C.S. and Wang L.Z. (2005), Bound state of the Dirac equation into Vector and Scalar scarf – type potentials, Phys. Lett. A 340, 59
  • [18] B. I. Ita, H. Louis, T. O. Magu, N. A. Nzeata-Ibe, Bound State Solutions of the Klein Gordon Equation with Woods-Saxon Plus Attractive Inversely Quadratic Potential Via Parametric Nikiforov-Uvarov Method. World Scientific News 74 (2017) 280-287
  • [19] Benedict Iserom Ita, Louis Hitler, Bound State Solutions of the s-wave Schrodinger Equation for Generalized Woods-Saxon plus Mie-Type Nuclei Potential within the framework of Nikiforov-Uvarov. Method World Scientific News 77(2) (2017) 378-384
  • [20] B. I. Ita, H. Louis, T. O. Magu, N. A. Nzeata-ibe, Bound State Solutions of the Schrӧdinger’s Equation with Manning-Rosen Plus a Class of Yukawa Potential Using Pekeris-like Approximation of the Coulomb Term and Parametric Nikiforov-Uvarov. World Scientific News 70(2) (2017) 312-319
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-4285bd46-4de1-4a4d-ac76-4df66e47d922
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.