Tools

Link to site

Journal

Article title

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

89-107

Physical description

References

- [1] Amlan K. Roy, Abraham F. Jalbout, Emil I. Proynov (2013) Accurate Calculation of the bound state of Hellmann Potential.arXiv:1307.2983v1 [quant-ph]11Jul2013.
- [2] Antia A.D., Ikot A.N., Ituen E.E. and Akpan I.O., (2012), Bound state of the Klein-Gordon equation for deformed Hulthen potential with position dependent mass, Sri Lankan J. of Phys. Vol. 13(1) 27-40
- [3] Alhaidari A.D. (2001), Relativistic extension of shape – invariant potentials, J. Phys. A: Math. Gen. 34, 9827
- [4] Berkdemir C., Berkdemir A. and Sever R. (2006), Systematical Approach to the Exact solution of the Dirac Equation for A special form of the Woods – Saxon potential, Phys. A: Math. Gen. 399, 13455
- [5] Cheng Y.F. and Dai T.O., (2007). Exact solution of the Klein – Gordon Equation with a Ring – shape modified Kratzer potential, Chin. J. Phys. 45, 480 – 487
- [6] Ciftcim H. Hall R.L. and Saad N. (2003), Asymptotic iteration method for eigenvalue problems, J. Phys. A. 36, 11807.
- [7] Diao Y.F., Yi L.Z. and Jia C.S., (2004), Bound states of the Klein – Gordon equation with Vector and Scalar five – parameter exponential – type potentials, Phys. Lett. A 332, 157
- [8] Hott M and De Souza Detra A. (2006), Dirac equation exact solutions for generalized asymmetrical Hartmann Potentials, Phys. Lett A 356, 215
- [9] Ikot A.N., Ibanga E.J., Awoga A.O., and Akpabio L.E. (2012), Solutions of Schrödinger equation with generalized inverted hyperbolic potential, J. of Modern Phys. 3, 1849-1855
- [10] Ikot A.N., Udoimuk A.B. and Akpabio L.E. (2011), Bound states solution of Klein-Gordon equation with typel equal vector and scalar poschl-Teller potential for arbitrary l-state, Am. J. Sci. Ind. Res. 2, 179-183
- [11] Ikot A.N, Awoga O.A, Anti A.D. (2013). Bound state solutions of d-dimensional Schrondinger equation with Eckart potential plus modified deformed Hylleraas potential, Chin. Phys. B Vol. 22, No. 2 020304
- [12] Ikhadair S. and Sever R. (2008), Solution of the D – dimensional Klein-Gordon equation with equal scalar and Vector ring – shaped pseudo harmonic potential, Int. J. Mod. Phys. C 19, 1425
- [13] Jia C.S., Gao P. and Peng X.L. (2006), Exact solution of the Dirac – Eckart problem with spin and pseudospin symmetry, J. Phys. A: Math. Gen. 39, 7737
- [14] Oyewumi K.J. and Akoshile C.O. (2010), Bound State solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry, Eur. Phys. J. A 45, 311-318.
- [15] Qiang W.C. (2004), Bound State of the Klein-Gordon and Dirac equations for potentials, Chin. Phys. 13, 575
- [16] Xu Y., He S. and Jia C.S., (2010), Approximate analytical solutions of the Klein – Gordon equation with the Poschl – Teller potential including the centrifugal term, Phys. Scripta 81, 045001
- [17] Zhang X.C., Liu Q.W., Jia C.S. and Wang L.Z. (2005), Bound state of the Dirac equation into Vector and Scalar scarf – type potentials, Phys. Lett. A 340, 59
- [18] B. I. Ita, H. Louis, T. O. Magu, N. A. Nzeata-Ibe, Bound State Solutions of the Klein Gordon Equation with Woods-Saxon Plus Attractive Inversely Quadratic Potential Via Parametric Nikiforov-Uvarov Method. World Scientific News 74 (2017) 280-287
- [19] Benedict Iserom Ita, Louis Hitler, Bound State Solutions of the s-wave Schrodinger Equation for Generalized Woods-Saxon plus Mie-Type Nuclei Potential within the framework of Nikiforov-Uvarov. Method World Scientific News 77(2) (2017) 378-384
- [20] B. I. Ita, H. Louis, T. O. Magu, N. A. Nzeata-ibe, Bound State Solutions of the Schrӧdinger’s Equation with Manning-Rosen Plus a Class of Yukawa Potential Using Pekeris-like Approximation of the Coulomb Term and Parametric Nikiforov-Uvarov. World Scientific News 70(2) (2017) 312-319

Document Type

article

Publication order reference

YADDA identifier

bwmeta1.element.psjd-4285bd46-4de1-4a4d-ac76-4df66e47d922

Identifiers