PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 114 | 84-105
Article title

Soymida febrifuga aqueous root extract maneuvered silver nanoparticles as mercury nanosensor and potential microbicide

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present communication reports a rapid, uncomplicated, sustainable and facile method of eco-friendly synthesis of silver nanoparticles (AgNPs). The pressing need for the development of benign, profitable and eco-friendly alternative routes has inspired researchers to explore plant extracts as safer replacements to hazardous chemicals. In the present study, a benign method of synthesis of AgNPs using Soymida febrifuga aqueous root extract has been developed. The characterization studies of synthesized AgNPs revealed spherical morphology and crystalline nature of AgNPs. The average particle size was 21.81 nm. The synthesized AgNPs were employed as mercury nanosensor for the selective and sensitive detection of toxic mercury ions in water and soil samples. The AgNPs showed a marked visual color change and change in surface plasmon resonance band on interaction with mercury ions. The greater selectivity of AgNPs towards mercury ions was observed. The limit of detection of mercury by 100 μL of colloidal AgNPs was found to be 2×10-4 M visually and 1.332×10-5 M spectrophotometrically in water samples and ×-4 M visually and 22.3×10-5 M spectrophotometrically in soil samples. The method makes use of a small quantity of AgNPs for detection of mercury in water and soil samples. The method proposed in the present study provides a rapid, selective and sensitive method for detection of mercury ions in environmental water and soil samples. The synthesized AgNPs were also used as effective microbicidal agents. The microbicidal potential of the synthesized AgNPs was checked against two gram positive and gram negative bacterial strains.
Year
Volume
114
Pages
84-105
Physical description
Contributors
author
  • Forensic Science Unit, Department of Chemistry, University College of Science, Osmania University, Hyderabad - 500007, Telangana, India
  • Department of Chemistry, Osmania University College for Women, Koti, Hyderabad - 500095, Telangana, India
References
  • [1] P. Mosae Selvakumar, C.A. Antonyraj, R. Babu, A. Dakhsinamurthy, N. Manikandan, A. Palanivel, Green synthesis and antimicrobial activity of monodispersed silver nanoparticles synthesized using lemon extract, Synth. React. Inorganic, Met. Nano-Metal Chem. 46 (2015) 291–294. doi:10.1080/15533174.2014.971810
  • [2] N. Anupama, G. Madhumitha, Green synthesis and catalytic application of silver nanoparticles using Carissa carandas fruits, Inorg. Nano-Metal Chem. 47 (2016) 116–120. doi:10.1080/15533174.2016.1149731
  • [3] K. Kalantari, A. Binti, M. Afifi, S. Bayat, K. Shameli, S. Yousefi, et al., Heterogeneous catalysis in 4-nitrophenol degradation and antioxidant activities of silver nanoparticles embedded in Tapioca starch, Arab. J. Chem. (2017) 1–6. doi:10.1016/j.arabjc.2016.12.018
  • [4] M.M.R. Mollick, D. Rana, S.K. Dash, S. Chattopadhyay, B. Bhowmick, D. Maity, et al., Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications, Arab. J. Chem. (2015). doi:10.1016/j.arabjc.2015.04.033
  • [5] P. Rauwel, E. Rauwel, S. Ferdov, M.P. Singh, Silver Nanoparticles: Synthesis, Properties, and Applications, Adv. Mater. Sci. Eng. 2015 (2015) 1–2. doi:10.1155/2015/624394
  • [6] G. Sahni, A. Panwar, B. Kaur, Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity, Int. Nano Lett. 5 (2015) 93–100. doi:10.1007/s40089-015-0142-y
  • [7] F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation, J. Phys. Chem. B. 104 (2000) 8333–8337. doi:10.1021/jp001803b
  • [8] D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection., Nanotechnology 17 (2006) 4019–4024. doi:10.1088/0957-4484/17/16/004.
  • [9] T. Rajagopal, I.A.A. Jemimah, P. Ponmanickam, M. Ayyanar, Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects., J. Environ. Biol. 36 (2015) 1283–1289.
  • [10] G. Suresh, P.H. Gunasekar, D. Kokila, D. Prabhu, D. Dinesh, N. Ravichandran, et al., Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127 (2014) 61–66. doi:10.1016/j.saa.2014.02.030
  • [11] S. Arokiyaraj, S. Vincent, M. Saravanan, Y. Lee, Y.K. Oh, K.H. Kim, Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, Artif. Cells, Nanomedicine, Biotechnol. 45 (2016) 372–379. doi:10.3109/21691401.2016.1160403.
  • [12] E. El Khoury, M. Abiad, Z.G. Kassaify, D. Patra, Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity, Colloids Surfaces B Biointerfaces. 127 (2015) 274–280. doi:10.1016/j.colsurfb.2015.01.050
  • [13] P. Jeevan, K. Ramya, A.E. Rena, Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa, Indian J. Biotechnol. 11 (2012) 72–76.
  • [14] S. Ahmed, Saifullah, M. Ahmad, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J. Radiat. Res. Appl. Sci. 9 (2016) 1–7. doi:10.1016/j.jrras.2015.06.006
  • [15] R. Kumar, S.M. Roopan, A. Prabhakarn, V.G. Khanna, S. Chakroborty, Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 90 (2012) 173–176. doi:10.1016/j.saa.2012.01.029
  • [16] K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics, J. Radiat. Res. Appl. Sci. 9 (2016) 217–227. doi:http://dx.doi.org/10.1016/j.jrras.2015.10.002
  • [17] R.M. Pop, A.D. Buzoianu, I. V. Rati, C. Socaciu, Untargeted Metabolomics for Sea Buckthorn (Hippophae rhamnoides ssp. carpatica) berries and leaves: Fourier transform infrared spectroscopy as a rapid approach for evaluation and discrimination, Not. Bot. Horti Agrobot. Cluj-Napoca. 42 (2014) 545–550. doi:10.15835/nbha4229654
  • [18] M. Zuk, A. Kulma, L. Dymińska, K. Szołtysek, A. Prescha, J. Hanuza, et al., Flavonoid engineering of flax potentiate its biotechnological application., BMC Biotechnol. 11 (2011) 1–19. doi:10.1186/1472-6750-11-10
  • [19] V. V. Makarov, A.J. Love, O. V. Sinitsyna, S.S. Makarova, I. V. Yaminsky, M.E. Taliansky, et al., “Green” nanotechnologies: Synthesis of metal nanoparticles using plants, Acta Naturae. 6 (2014) 35–44. doi:10.1039/c1gc15386b
  • [20] T. Theivasanthi, M. Alagar, Electrolytic Synthesis and Characterization of Silver Nanopowder, Nano Biomed. Eng. 4 (2012). doi:10.5101/nbe.v4i2.p58-65
  • [21] I. Pastoriza-Santos, L.M. Liz-Marzán, Formation of PVP-protected metal nanoparticles in DMF, Langmuir. 18 (2002) 2888–2894. doi:10.1021/la015578g
  • [22] I. Johnson, H.J. Prabu, Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora, Int. Nano Lett. 5 (2015) 43–51. doi:10.1007/s40089-014-0136-1
  • [23] L. Christensen, S. Vivekanandhan, M. Misra, A.K. Mohanty, Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size, Adv. Mater. Lett. 2 (2011) 429–434. doi:10.5185/amlett.2011.4256
  • [24] M. Amutha, P. Lalitha, M.J. Firdhouse, Biosynthesis of Silver Nanoparticles Using Kedrostis foetidissima (Jacq.) Cogn., J. Nanotechnol. 2014 (2014) 1–5. doi:10.1155/2014/860875
  • [25] G. Marslin, R.K. Selvakesavan, G. Franklin, B. Sarmento, A.C.P. Dias, Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera, Int. J. Nanomedicine. 10 (2015) 5955–5963. doi:10.2147/IJN.S81271
  • [26] N. Ahmad, S. Sharma, Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus, Green Sustain. Chem. 2 (2012) 141–147. doi:10.4236/gsc.2012.24020
  • [27] B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, et al., Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arab. J. Chem. (2015). doi:10.1016/j.arabjc.2015.08.008
  • [28] K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, A. Rafipour, Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles, Sensors Actuators B Chem. 161 (2012) 880–885. doi:10.1016/j.snb.2011.11.052
  • [29] P. Jarujamrus, M. Amatatongchai, A. Thima, T. Khongrangdee, C. Mongkontong, Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 142 (2015) 86–93. doi:10.1016/j.saa.2015.01.084
  • [30] M.L. Firdaus, I. Fitriani, S. Wyantuti, Y.W. Hartati, R. Khaydarov, J.A.Mcalister, et al., Colorimetric Detection of Mercury(II) Ion in Aqueous Solution Using Silver Nanoparticles, Anal. Sci. 33 (2017) 831–837. doi:10.2116/analsci.33.831
  • [31] K.S. Prasad, G. Shruthi, C. Shivamallu, Functionalized Silver Nano-Sensor for Colorimetric Detection of Hg2+ Ions: Facile Synthesis and Docking Studies, Sensors. 18 (2018) 2698. doi:10.3390/s18082698
  • [32] A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, T.Q. Huy, N. Van Hieu, et al., Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity, Mater. Sci. Eng. C. 30 (2010) 910–916. doi:10.1016/j.msec.2010.04.009
  • [33] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177–182. doi:10.1016/j.jcis.2004.02.012
  • [34] S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett. 2 (2012) 32. doi:10.1186/2228-5326-2-32.
  • [35] K. Niska, N. Knap, A. Kędzia, M. Jaskiewicz, W. Kamysz, I. Inkielewicz-Stepniak, Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice, Int. J. Med. Sci. Int. J. Med. Sci. 13 (2016). doi:10.7150/ijms.16011
  • [36] M. Umadevi, T. Rani, T. Balakrishnan, R. Ramanibai, Antimicrobial Activity of Silver Nanoparticles Prepared Under an Ultrasonic Field, Int. J. Pharm. Sci. Nanotechnol. 4 (2011) 1491–1496.
  • [37] T.A. Abalkhil, S.A. Alharbi, S.H. Salmen, M. Wainwright, Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria, Biotechnol. Biotechnol. Equip. 31 (2017) 411–417. doi:10.1080/13102818.2016.1267594
  • [38] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. C. 58 (2016) 36–43. doi:10.1016/j.msec.2015.08.018
  • [39] S. T, V.L. G, Antimicrobial and Catalytic Potential of Soymida febrifuga Aqueous Fruit Extract-Engineered Silver Nanoparticles, Bionanoscience. 8 (2018) 179–195. doi:10.1007/s12668-017-0458-3.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-41a6fba8-3ec4-4373-b13d-68713cf70aa3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.