PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 80 | 29-42
Article title

Development and SEM/EDS characterisation of porous coatings enriched in magnesium and copper obtained on titanium by PEO with ramp voltage

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the present paper, the SEM and EDS results of porous and enriched in calcium and/or zinc coatings, which were obtained during 3-minute treatments by Plasma Electrolytic Oxidation/ Micro Arc Oxidation processes on CP Titanium Grade 2 at ramp potentials (liner polarization) from 0 up to 650 VDC in electrolytes containing 500 g Mg(NO3)2∙6H2O and/or 500 g Cu(NO3)2∙3H2O in 1 L H3PO4, are reported. It was found that the obtained coatings, dependent on the PEO process conditions, have pores with different shapes and diameters. The Mg/P and Cu/P ratios by atomic concentration are the same and equal to 0.09±0.01 (by wt %) | 0.11±0.01 (by at%) and/or 0.40±0.08 (by wt %) | 0.19±0.04 (by at%), respectively. That may testify the hydroxyapatite-like structures of Mg-Ti-PO43– and/or Cu-Ti-PO43– have been identified to occur.
Discipline
Year
Volume
80
Pages
29-42
Physical description
References
  • [1] Isabella da Silva Vieira Marques,Nilson Cristino da Cruz, Richard Landers, Judy Chia-Chun Yuan, Marcelo Ferraz Mesquita, Cortino Sukotjo, Mathew T. Mathew, and Valentin Ricardo Barao, Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration, Biointerphases, 11 (2016) 031008; http://doi.org/10.1116/1.4960654
  • [2] Yavari S.A., Necula B.S., Fratila-Apachitei L.E., Duszczyk J., Apatichei I., Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys, Surface Engineering, 32(6) (2016) 411-417; DOI: 10.1179/1743294415Y.0000000101
  • [3] Quintero D., Galvis O., Calderón J.A., Gómez M.A., Castaño J.G., Echeverría F., Habazaki H., Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy, Surface and Coatings Technology, 283 (2015) 210-222
  • [4] Davis J.R., ‘Handbook of materials for medical devices’, Chapter 3, ‘Metallic materials’, 21–50; 2003, Materials Park, OH, ASM International.
  • [5] Ming-Tzu Tsai, Yin-Yu Chang, Henh-Li Huang, Yu-Hsuan Wu, Tzong-Ming Shieh, Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films, Surface and Coatings Technology, 303A (2016) 268-276
  • [6] Mónica Echeverry-Rendón, Oscar Galvis, David Quintero Giraldo, Juan Pavón, Jose Luis López-Lacomba, Emilio Jimenez-Pique, Marc Anglada, Sara M. Robledo, Juan G. Castaño, Felix Echeverrıa, Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces, Journal of Materials Science: Materials in Medicine, 72 (2015) 26 (18 pages); DOI 10.1007/s10856-015-5408-4
  • [7] Rokosz K., Hryniewicz T., Pietrzak K., SEM and EDS studies of porous coatings enriched in calcium and zinc obtained by PEO with ramp voltage, World Scientific News, 77(2) (2017) 242-255
  • [8] Hryniewicz T., Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), Monograph No. 26 (1989) Koszalin University of Technology Publishing House, ISSN 0239-7129 (in Polish).
  • [9] Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), Koszalin University of Technology Publishing House (2007) ISSN 0239-7129 (in Polish).
  • [10] Hryniewicz T., Rokosz K., Zschommler Sandim H.R., SEM/EDX and XPS studies of niobium after electropolishing, Applied Surface Science, 263 (2012) 357-361.
  • [11] Rokosz K., Electrochemical Polishing in magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), Koszalin University of Technology Publishing House (2012) ISSN 0239-7129 (in Polish).
  • [12] Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments, Surface and Coatings Technology, 62(17-18) (2008) 3073-3076
  • [13] Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology, 204(16-17) (2010) 2583-2592
  • [14] Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332
  • [15] Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing, Surface and Coatings Technology, 203(9) (2008) 1508-1515
  • [16] Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010) 169-174
  • [17] Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Journal of Iron and Steel Research, 83(9) (2012) 910-918
  • [18] Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010) 47–55.
  • [19] Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64
  • [20] Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012) 69-72
  • [21] Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field, Materials, 8 (2015) 205-215
  • [22] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015) 87-92
  • [23] Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology, 276 (2015) 516-520
  • [24] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing, Tehnicki vjesnik - Technical Gazette, 23(3) (2016) 731-735
  • [25] Rokosz K., Hryniewicz T., Chapon P., Raaen S., Zschommler Sandim H.R., XPS and GDOES characterisation of porous coating enriched with copper and calcium obtained on Tantalum via Plasma Electrolytic Oxidation, Journal of Spectroscopy, Article ID 7093071 (2016) 7 pages, http://dx.doi.org/10.1155/2016/7093071.
  • [26] Han Y., Hong S.H., Xu K.W., Structure and in vitro bioactivity of titania-based films by micro-arc oxidation, Surface and Coatings Technology, 168 (2003) 249-258
  • [27] Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, Electrochimica Acta, 56(24) (2009) 8962-8968
  • [28] Rokosz K, Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016) 303-315; DOI: 10.1002/sia.6136
  • [29] Han Y., Hong S.H., Xu K.W., Synthesis of nanocrystalline titania films by micro-arc oxidation, Materials Letters, 56 (2002) 744-747
  • [30] Fei C., Hai Z., Chen C., Yangjian X., Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation, Progress in Organic Coatings, 64 (2009) 264-267
  • [31] Aliasghari S. Plasma Electrolytic Oxidation of Titanium. PhD thesis of Faculty of Engineering and Physical Sciences, The University of Manchester, School of Materials (2014) 223 pages
  • [32] Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K. Initial stages of plasma electrolytic oxidation of titanium, Corrosion Science, 45(2003) 2757-2768
  • [33] Wang Y., Jiang B., Lei T., Guo L., Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Materials Letters, 58(12) (2004) 1907-1911
  • [34] Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysł Chemiczny, 90(1) (2011) 84-90
  • [35] Krząkala A., Mlynski J., Dercz G., Michalska J., Maciej A., Nieuzyla L., Simka W., Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension, Archives of Metallurgy and Materials, 59(1) (2014) 199-204
  • [36] Rokosz K., Hryniewicz T., Raaen S., Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties, International Journal of Advanced Manufacturing Technology, 85 (2016) 2425-2437; DOI: 10.1007/s00170-015-8086-y
  • [37] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by Plasma Electrolytic Oxidation: Characterisation and Modelling, International Journal of Advanced Manufacturing Technology, 87 (2016) 3497-3512, DOI 10.1007/s00170-016-8692-3
  • [38] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation, International Journal of Advanced Manufacturing Technology, 89 (9-12) (2017) 2953-2965; DOI 10.1007/s00170-016-9206-z
  • [39] Rokosz K., Hryniewicz T., Raaen S., SEM, EDS and XPS analysis of nanostructured coating obtained on NiTi biomaterial alloy by Plasma Electrolytic Oxidation (PEO), Tehnički vjesnik-Technical Gazette, 24(1) (2017) 193-198
  • [40] Elliott J.C., Structure and Chemistry of Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam, The Netherlands, 1st edition, (1994) 404 pages, eBook ISBN: 9781483290317, Hardcover ISBN: 9780444815828
  • [41] Elliott J.C., Wilson R.M., Dowker S.E.P., Apatite Structures, Advances in X-ray Analysis, 45 (2002) 172-181
  • [42] Dorozhkin S.V., Calcium orthophosphates in nature, biology and medicine, Materials, 2(2) (2009) 399-498
  • [43] LeGeros R.Z., Calcium phosphate-based osteoinductive materials, Chemical Reviews, 108(11) (2008) 4742-4753
  • [44] Zakharov N.A., Polunina I.A., Polunin K.E., Rakitina N.M., Kochetkova E.I., Sokolova N.P., Kalinnikov V.T., Calcium hydroxyapatite for medical applications, Inorganic Materials, 40(6) (2004) 641-648
  • [45] Kolmas J., Groszyk E., Kwiatkowska-Róhycka D., Substituted Hydroxyapatites with Antibacterial Properties, BioMed Research International Article ID 178123, 15 pages (2014) 1-15; DOI: dx.doi.org/10.1155/2014/178123
  • [46] Gallo J., Holinka M., Moucha C.S., Antibacterial Surface Treatment for Orthopaedic Implants, International Journal of Molecular Sciences, 15 (2014) 13849-13880, DOI: 10.3390/ijms150813849
  • [47] Xiangyu Zhang, Xiaobo Huang, Yong Ma, Naiming Lin, Ailan Fan, Bin Tang Bactericidal behavior of Cu-containing stainless steel surfaces, Applied Surface Science, 258 (2012) 10058-10063
  • [48] Hempel F., Finke B., Zietz C., Bader R., Weltmann K.-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper, Surface and Coatings Technology, 256 (2014) 52-58
  • [49] Xiaohong Yao, Xiangyu Zhang, Haibo Wu, Linhai Tian, Yong Ma, Bin Tang, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation, Applied Surface Science, 292 (2014) 944-947
  • [50] Rokosz K., Hryniewicz T., Dudek Ł., Matysek D., Valiček J., Harničarova M., SEM and EDS Analysis of Surface Layer Formed on Titanium After Plasma Electrolytic Oxidation in H3PO4 with the Addition of Cu(NO3)2, Journal of Nanoscience and Nanotechnology, 16 (2016) 7814-7817
  • [51] Rokosz K., Hryniewicz T., Dalibor M., Raaen S., Valiček J., Dudek Ł., Harničarova M., SEM, EDS AND XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate, Materials, 9(318) (2016) 1-12; DOI: 10.3390/ma9050318
  • [52] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016) 303-315; DOI: 10.1002/sia.6136
  • [53] Rokosz K., Hryniewicz T., Malorny W., Characterisation of porous coatings obtained on materials by Plasma Electrolytic Oxidation, Materials Science Forum, 862 (2016) 86-95
  • [54] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016) 303-315, DOI: 10.1002/sia.6136
  • [55] Rokosz K., Hryniewicz T., Raaen S., Malorny W., Fabrication and characterisation of porous coatings obtained by plasma electrolytic oxidation, Journal of Mechanical and Energy Engineering, 1(1|41) (2017) 23-30
  • [56] Aina V., Lusvardi G., Annaz B., Gibson I.R., Imrie F.E., Malavasi G., Menabue L., Cerrato G., Martra G., Magnesium- and strontium-co-substituted hydroxyapatite: the effect of doped ions on the structure and chemico-physical properties, Journal of Materials Science: Materials in Medicine, 23(12) (2012) 2867-2879
  • [57] Webster T.J., Ergun C., Doremus R.H., Bizios R., Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion, Journal of Biomedical Materials Research, 59(2) (2002) 312-317
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-405516e9-985e-4e3e-9cba-85588b28b0bf
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.