Preferences help
enabled [disable] Abstract
Number of results
2016 | 40 | 223-234
Article title

Characteristics of thermal explosions on Newtonian and non-Newtonian fluids

Title variants
Languages of publication
An analytical study of thermal explosion on Newtonian and non-Newtonian fluid is carried out. Approximate solutions to the governing equations and analysis of the study in the Newtonian case, showed that an increase in Frank-Kamenestkii parameter and that of the Semenov parameter decreases the minimum temperature of the reacting fluid thereby delaying the initiation of thermal explosions while additional heat source brings about early initiation of thermal explosions. The same observation was deduced in the non-Newtonian case but in varying degrees.
Physical description
  • Department of Physics, University of Port Harcourt, P M B 5323, Choba, Port Harcourt, Nigeria,
  • [1] Adegbie, K. S (2008). On the delay type behaviour of thermal explosion in a combustible gas mixture cointaning fuel droplets with Arrhenius power-law model. Journal of Nigerian Association of Mathematical Physics,13:69-82
  • [2] Goldfard, I., Sazhin, S. and Zinoviev, A. (2004). Delayed thermal explosion in flammable gas containing fuel droplets: Asymptotic analysis. Journal of Egineering Mathematics, 50: 399-414.
  • [3] Goldfard, I., Goldshtein, V. and Zinoviev, A. (2002). Delayed thermal explosion in porous media: Method of Invariant Manifolds. IMA J of Applied Math. 67: 263-280.
  • [4] Goldfard, I and Zinoviev, A (2003). A study of delayed spontaneous insulation fires. Physics Letters A, 311: 491-500.
  • [5] Goldfard, I., Goldshtein, V., Greenberg, J. B and Kuzmenko, G (2000). Thermal explosion in a droplet gas cloud. Combustion Theory Modeling. 4: 289-316.
  • [6] Goldfard, I., Goldshtein V., Kuzmenko, G and Sazhin, S (1999). Thermal radiation effect on thermal explosion in a gas containing fuel droplets. Combustion Theory Modeling. 3: 769-787.
  • [7] Goldshtein, V. and Sobolev, V. (1992). Integral manifolds in chemical kinetics and combustion in singularity theory and some problems of functional analysis. AMS Translations series, 2: 153-164
  • [8] Goldshtein, V., Goldfard, I., Shreiber, I. and Zinoview, A. (1998). Oscillations in a combustible gas bubble. Combustion Theory Modeling. 2: 1-17
  • [9] Goldfard, I., Goldshtein, V., Karz, D. and Sazhin, S. (2007). Radiation effect on thermal explosion in gas containing evaporated fuel droplets. International Journal of Thermal Sciences. 46: 358-370.
  • [10] Goldshtein, V. and Zinovien, A. (1997). Thermal explosion in multiphase media. Nonlinear Analysis Theory, Method and Applications. 30(8): 4771-4780.
  • [11] Ajadi, S. O and Gol’dshtein V (2010). Thermal explosion characteristics in the presence of an additional heat source. Journal of Mathematical sciences, 1:36-48
  • [12] Ayeni, R. O., Okedoye, A. M., Popoola, A. O. and Ayodele, T. O (2005). Effect of radiation on the critical Frank-kamenestkii parameter of thermal ignition in a combustible gas containing fuel droplets. Journal of Nigerian Association of Mathematical Physics. 9: 17-23.
  • [13] Lamidi, O. T. and Ayeni, R.O. (2007). Influence of power law index in an unsteady exothermic reaction. Journal of Nigerian Association of Mathematical Physics. 11: 545-548.
  • [14] Lamidi, O. T., Ajala, A. O., Okedoye, A. M. and Ayeni, R.O. (2008). Effect of power law exponent in endothermic reactions. Journal of Nigerian Association of Mathematical Physics. 13: 231-234.
  • [15] Ngiangia, A. T., Amadi, O. and Harry, S. T. (2013). Approximation of power law exponent to Newtonian fluids in reactions pathway. International Journal of Dynamics of Fluids. 9(1), 29-33.
  • [16] Ngiangia, A. T. (2015). The effect of Frank-Kamenstkii parameter on Newtonian fluids and non-Newtonian fluids. Journal of Advances in Mathematics. 10(8): 3705-3710
  • [17] Hughes, W. F and Brighton, J. A. (1999). Fluid Dynamics (Third edition). Schaum’s Outlines, McGraw-Hill, New York
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.