Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 161 | 1-10

Article title

Instanton Action for Two-Dimensional Black Hole in the Rainbow Gravity

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we find the exact solution of the Duffin-Kemmer-Petiau (DKP) equation for a two-dimensional black hole model in the framework of rainbow gravity. Subsequently, we discuss the transmission probability by making use of the instanton action method and study briefly the effect of rainbow functions on a two-dimensional black hole instanton. Also, we introduce graphical analysis of our result.

Discipline

Year

Volume

161

Pages

1-10

Physical description

Contributors

  • Mersin University, School of Applied Technology and Management of Erdemli, Department of Computer Technology and Information Systems, 33740, Mersin, Turkey

References

  • [1] Carlo Rovelli, Lee Smolin, Discreteness of area and volume in quantum gravity. Nuclear Physics B 442 (1995) 593
  • [2] Abhay Ashtekar, Jerzy Lewandowski, Quantum Theory of Gravity I: Area Operators. Classical and Quantum Gravity 14 (1996) 55-82
  • [3] Abhay Ashtekar, Jerzy Lewandowski, Quantum Theory of Geometry II: Volume operators. Advances in Theoretical and Mathematical Physics 1 (1998) 388-429
  • [4] Giovanni Amelino-Camelia, Testable scenario for Relativity with minimum-length. Physics Letter B 510 (2001) 255-263
  • [5] Giovanni Amelino-Camelia, Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. International Journal of Modern Physics D 11 (2002) 35
  • [6] João Magueijo and Lee Smolin, Lorentz Invariance with an Invariant Energy Scale. Physical Review Letters 88 (2002) 190403
  • [7] Giovanni Amelino-Camelia, Gianluca Mandanici, Andrea Procaccini and Jerzy Kowalski-Glikman, Phenomenology of Doubly Special Relativity. International Journal of Modern Physics A 20 (2005) 6007-6037
  • [8] Yiling, Xiang LI and Hongbao Zhang, Thermodynamics of Modified Black Holes from Gravity's Rainbow. Modern Physics Letters A 22 (2007) 2749-2756
  • [9] Joao Magueijo, Lee Smolin, Gravity's Rainbow. Classical and Quantum Gravity 21 (2004) 1725-1736
  • [10] J. W. Moffat, Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology. International Journal of Modern Physics D 2 (1993) 351-366
  • [11] João Magueijo and Lee Smolin, Generalized Lorentz invariance with an invariant energy scale. Physical Review D 67 (2003) 044017
  • [12] Carlos Leiva, Joel Saavedra and José Villanueva, Geodesic Structure of the Schwarzschild Black Hole in Rainbow Gravity. Modern Physics Letters A 24(2009) 1443-1451
  • [13] Kazuya Koyama, Gravity beyond general relativity. International Journal of Modern Physics D 27 (2018) 1848001
  • [14] Suraj Gupta, Gravitation and electromagnetism. Physical Review 96 (1954) 1683-1685
  • [15] David Boulware, Deser, Classical general relativity derived from quantum gravity. Annals of Physics 89 (1975) 193-240
  • [16] Stephen Hawking, Black holes in general relativity. Communications in Mathematical Physics 25 (1972) 152-166
  • [17] Stephen Hawking, Black holes and thermodynamics. Physical Review D 13 (1976) 191-197
  • [18] Teitelboim Claudio, Gravitation and Hamiltonian structure in two spacetime dimensions. Physics Letters B 126 (1983) 41-45
  • [19] Roman Jackiw, Lower Dimensional Gravity. Nuclear Physics B 252(1985) 343-356
  • [20] Robert Mann, Shiekh, A., Tarasov, L., Classical and quantum properties of two-dimensional black holes. Nuclear Physics B 341 (1989) 134-154
  • [21] Jan Keitel, Instantons in Quantum Field Theory and String Theory. Imperial College London (2012).
  • [22] Duffin, R.J. On the characteristic matrices of covariant systems. Physical Review, 54 (1938) 1114
  • [23] Kemmer, N., The particle aspect of meson theory. Proceeding of the Royal Society A 173 (1939) 91-116
  • [24] Petiau, G., PhD thesis. Academie Royale de Belgique Classe des Sciences Memoires Collection 8 (1936).
  • [25] Lunardi, J.T., A note on the Duffin-Kemmer-Petiau equation in (1+1) space-time dimensions. Journal of Mathematical Physics 58 (2017) 123501-123505
  • [26] Lunardi, J.T., Pimentel, B.M., Teixeiri, R.G., Valverde, J.S., Remarks on Duffin–Kemmer–Petiau theory and gauge invariance. Physics Letter A 268 (200) 165-173
  • [27] Kenan Sogut, Ali Havare. Transmission resonances in the Duffin–Kemmer–Petiau equation in (1+1) dimensions for an asymmetric cusp potential. Physica Scripta 82 (2010) 045013
  • [28] Parker, L., Toms, D.J. Quantum Field Theory in curved spacetime. Cambridge University Press (2009).
  • [29] Merad, M., DKP equation with smooth potential and position-dependent mass. International Journal of Theoretical Physics 46 (2007) 2105-2118
  • [30] Cheraitia, B.B., Boudjedaa, T., Solution of DKP equation in Woods–Saxon potential. Physics Letter A 338 (2005) 97-107
  • [31] Yasuk, F., Berkdemir, A., Onem, C., Exact Solutions of the Duffin–Kemmer–Petiau Equation for the Deformed Hulthen Potential. Physica Scripta 71 (2005) 340-343
  • [32] Nuri Unal, Duffin–Kemmer–Petiau equation, Proca equation and Maxwells equation in (1+1) D. Concepts of Physics 2 (2005) 273
  • [33] Nuri Unal, Path integral quantization of a spinning particle. Foundations of Physics 28 (1998) 755-762
  • [34] Nuri Unal, A simple model of the classical Zitterbewegung: Photon wave function. Foundations of Physics 27 (1997) 731-746
  • [35] Milton Abramowitz, Irene Stegun, Handbook of mathematical functions. National Bureau of Standards Applied Mathematics 55 (1964)
  • [36] George Arfken and Hans Weber, Mathematical Methods for Physicists. Sixth Edition. Elsevier Academic Press (2005)

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3f4ccfc6-f7f8-4ea4-96d8-632ce42caefc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.