Preferences help
enabled [disable] Abstract
Number of results
2016 | 21 | 27-45
Article title


Title variants
Languages of publication
Solutions of chitosan (CS) and carboxymethyl chitosan (CMCS) were subjected to irradiation by electron beam in presence of a crosslinking agent (poly(ethylene glycol) diacrylate - PEGDA) in order to produce carboxymethyl chitosan- and chitosan-based hydrogels. PEGDA macromonomer itself undergoes simultaneous polymerization and crosslinking either in neutral water or in acidic medium. Acidic solutions of chitosan of 0.5, 1 and 2% can be effectively crosslinked with PEGDA to form a gel. Although CMCS undergoes radiation-initiated crosslinking only at high concentration in water (over 10%), the presence of PEGDA in solution facilitated hydrogel formation even at lower concentration of CMCS. Formation of CS and CMCS hydrogels required irradiation doses lower than those needed for sterilization, i.e. 25 kGy, in some cases even as low as 200 Gy. Sol-gel analysis revealed relatively high gel fraction of obtained hydrogels, up to 80%, and good swelling ability. Both parameters can be easily controlled by composition of the initial solution and irradiation dose. Possible mechanisms of crosslinking reactions were proposed, involving addition of the polysaccharide macroradicals to a terminal double bond of PEGDA.
Physical description
  • [1] Rosiak J, Rucinska-Rybus A, Pekala; Method of manufacturing hydrogel dressings. US patent 4,871,490, Polish patent 151,581.
  • [2] Paparella A, Park K; (1996) Synthesis of polysaccharide chemical gels by gamma-ray irradiation, ACS Symp Ser 620, 180-187. DOI: 10.1021/bk-1996-0620.ch013.
  • [3] Al-Assaf S, Phillips GO, Williams PA, du Plessis TA; (2007) Application of ionizing radiations to produce new polysaccharides and proteins with enhanced functionality. Nucl Instr Meth Phys Res B 265, 37-43. DOI: 10.1016/j.nimb.2007.08.015.
  • [4] Ramnani SP, Chaudhari CV, Patil ND, Sabharwal S; (2004) Synthesis and characterization of crosslinked chitosan formed by irradiation in the presence of carbon tetrachloride as a sensitizer. J Polym Sci A Pol Chem 42, 3897-3909. DOI:10.1002/pola.20230.
  • [5] Khandal D, Aggarwal M, Suri G, Coqueret X; (2014) Electron beam irradiation of maltodextrin and cinnamyl alcohol mixtures: Influence of glycerol on cross-linking. Carbohydrate Polym 117, 150-159. DOI: 10.1016/j.carbpol.2014.09.115.
  • [6] Khandal D, Mikus P-Y, Dole P, Coqueret X; (2013); Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters. Radiat Phys Chem 84, 218-222. DOI: 10.1016/j.radphyschem.2012.05.007.
  • [7] Khandal D, Mikus P-Y, Dole P, Bliard C, Soulestin J, Lacrampe M-F, Baumberger S, Coqueret X; (2012) Tailoring the properties of thermoplastic starch by blending with cinnamyl alcohol and radiation processing: An insight into the competitive grafting and scission reactions. Radiat Phys Chem 81, 986-990. DOI: 10.1016/j.radphyschem.2011.10.028.
  • [8] Wach RA, Mitomo H, Nagasawa N, Yoshii F; (2003). Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Instr Meth Phys Res B 211, 533-544. DOI: 10.1016/S0168-583X(03)01513-1.
  • [9] Nagasawa N, Yagi T, Kume T, Yoshii F; (2004) Radiation crosslinking of carboxymethyl starch. Carbohydrate Polym 58, 109-113. DOI: 10.1016/j.carbpol.2004.04.021.
  • [10] Wach RA, Mitomo H, Nagasawa N, Yoshii F; (2003) Radiation cross-linking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68, 771-779. DOI: 10.1016/S0969-806X(03)00403-1.
  • [11] Wach RA, Kudoh H, Zhai M, Nagasawa N, Muroya Y, Yoshii F, Katsumura Y; (2004) Rate constants of reactions of carboxymethylcellulose with hydrated electron, hydroxyl radical and the decay of CMC macroradicals. A pulse radiolysis study. Polymer 45, 8165-8171. DOI: 10.1016/j.polymer2004.09.086.
  • [12] Wach RA, Mitomo H, Yoshii F, Kume T; (2001) Hydrogel of biodegradeable cellulose derivatives. II. Effect of some factors on radiation-induced cross-linking of CMC. J Appl Polym Sci 81, 3030-3037. DOI: 10.1002/app.1753.
  • [13] Wach R, Rokita B, Bartoszek N, Katsumura Y, Ulański P, Rosiak JM; (2014) Hydroxyl radical-induced crosslinking and radiation-initiated hydrogel formation in dilute aqueous solutions of carboxymethylcellulose, Carbohydrate Polym 112, 412–415. DOI: 10.1016/j.carbpol.2014.06.007.
  • [14] Muzzarelli RA; (1988) Carboxymethylated chitins and chitosans. Carbohydrate Polym 8, 1-21. DOI:10.1016/0144-8617(88)90032-X
  • [15] Luan LQ, Ha VTT, Nagasawa N, Kume T, Yoshii F, Nakanishi TM; (2005) Biological effect of irradiated chitosan on plants in vitro. Biotech Appl Biochem 41, 49-57. DOI: 10.1042/BA20030219.
  • [16] Czechowska-Biskup R, Ulanski P, Olejnik AK, Nowicka G, Panczenko-Kresowska B, Rosiak JM; (2007) Diet supplement based on radiation-modified chitosan and radiation-synthesized polyvinylpyrrolidone microgels. Influence on the liver weight in rats fed fat- and cholesterol-rich diet. J Appl Polym Sci 105, 169-176. DOI: 10.1002/app.26103.
  • [17] Czechowska-Biskup R, Rokita B, Ulanski P, Rosiak JM; (2005) Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity. Nucl Instr Meth Phys Res B 236, 383-390. DOI: 10.1016/j.nimb.2005.04.002.
  • [18] Zhao L, Mitomo H, Nagasawa N, Yoshii F, Kume T; (2003) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydrate Polym 51, 169-175. DOI:10.1016/S0144-861(02)00210-2.
  • [19] Wasikiewicz JM, Mitomo H, Nagasawa N, Yagi T, Tamada M, Yoshii F; (2006) Radiation crosslinking of biodegradable carboxymethylchitin and carboxymethylchitosan. J Appl Polym Sci 102, 758-767. DOI: 10.1002/app.24203.
  • [20] Kozicki M; (2011) How do monomeric components of a polymer gel dosimeter respond to ionizing radiation. A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter. Radiat Phys Chem 80 (12), 1419–1436. DOI: 10.1016/j.radphyschem.2011.07.011.
  • [21] Yan H, Dai J, Yang Z, Yang H, Cheng R; (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads, Chem Eng J, 174, 586–594. DOI: 10.1016/j.cej.2011.09.064.
  • [22] Muzzarelli RAA; (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polym, 77, 1–9. DOI: 10.1016/j.carbpol.2009.01.016.
  • [23] Yadollahi M, Farhoudian S, Namazi H; (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems, Int J Biol Macromol, 79, 37–43, DOI: 10.1016/j.ijbiomac.2015.04.032.
  • [24] Gierszewska-Drużyńska M, Ostrowska-Czubenko J; (2015) Structual and swelling properties of hydrogel membranes based on chitosan crosslinked with glutaraldehyde and sodium tripolyphosphate. Progress on Chemistry and Application of Chitin and its Derivatives, Volume XX, Łódź, 43-53. DOI: 10.15259/PCACD.20.04.
  • [25] Kozicki M, Kujawa P, Rosiak JM; (2002) Pulse radiolysis study of diacrylate macromonomer in aqueous solution. Radiat Phys Chem 65, 133-139. DOI: 10.1016/S0969-806X(02)00209-8.
  • [26] Varghese S, Elisseeff JH; (2006) Hydrogels for musculoskeletal tissue engineering. Adv Polym Sci 203, 95–144. DOI: 10.1007/12_072
  • [27] Kujawa P, Mohid N, Zaman K, Manshol W, Ulanski P, Rosiak JM; (1998) Pulse radiolysis of butyl acrylate in aqueous solution. Radiat Phys Chem 53, 403-409. DOI: 10.1016/S0969-806X(98)00131-5.
  • [28] Zhang X, Yang D, Nie J; (2008) Chitosan/polyethylene glycol diacrylate films as potential wound dressing material, Int J Biol Macromol, 43, 456–462. DOI: 10.1016/j.ijbiomac.2008.08.010.
  • [29] Socrates G; (2004) Infrared and Raman characteristic group frequencies: tables and charts. Chippenham, Wiltshire: John Wiley & Sons Ltd.
  • [30] Rumengan IFM, Suryanto E, Modaso R, Wullur S, Tallei TE, Limbong D; (2014) Structural characteristics of chitin and chitosan isolated from the biomass of cultivated rotifer, Brachionus rotundiformis. Int J Fish Aquat Sci 3 (1), 12–18.
  • [31] Hua-Cai G, Deng-Ke L; (2005) Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydrate Res, 340, 1351–1356. DOI: 10.1016/j.carres.2005.02.025.
  • [32] Zhang H, Yi Y, Feng D, Wang Y, Qin S; (2011) Hypoglycemic properties of oxovanadium (IV) coordination compounds with carboxymethyl-carrageenan and carboxymethyl-chitosan in alloxan-induced diabetic mice. J Evid Based Complementary Altern Med, 350, 1340-1347. DOI: 10.1155/2011/691067.
  • [33] Ma G, Zhang X, Han J, Song G, Nie J; (2009) Photo-polymerisable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA). Int J Biol Macromol 45, 499-503. DOI: 10.1016/j.ijbiomac.2009.08.007.
  • [34] Yom-Tov O, Seliktar D, Bianco-Peled H; (2016) PEG-thiol based hydrogels with controllable properties. Eur Polym J 74, 1-12. DOI: 10.1016/j.eurpolymj.2015.11.002.
  • [35] Ulański P, von Sonntag C; (2000) OH-Radical-induced chain scission of chitosan in the absence and presence of dioxygen. J Chem Soc Perk T 2, 2022–2028. DOI: 10.1039/B003952G
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.