Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 63 - 78

Article title

CHITOSAN-DERIVATIVES IN COMBINATIONS WITH SELECTED PORPHYRINOIDS AS NOVEL HYBRID MATERIALS FOR MEDICINE AND PHARMACY

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan and its derivatives are renewable biopolymers characterized by high biocompatibility; therefore, they are harmless to humans and allow immune tolerance and improved hydrophilicity. Moreover, chitosan has been the most studied of all polysaccharides used in biomedical applications during the last decade. Combinations of chitosan and porphyrinoid compounds in hybrid materials have revealed many potential applications for biomedical sciences. The main advantage of such materials is an increase in the solubility of porphyrinoids in body fluids and therefore greater release of singlet oxygen to the treated tissue. Chitosan-based drug delivery systems can improve the targeting of porphyrinoids and their release at predetermined locations and finally achieve desired therapeutic effects with minimal side effects. Hence, porphyrinoid-chitosan materials can be applied in drug delivery systems, cancer theranostics and magnetic resonance imaging. The combination of chitosan and porphyrinoids also appears useful in the healing and repairing of damaged organs, tissue engineering, regenerative medicine, as well as dressing materials. Huge benefits are related to the treatment of wounds, which has been presented for self-healing hydrogels based on chitosan and porphyrinoids. Furthermore, the chitosan/porphyrinoid combinations have revealed enormous benefits for antimicrobial photodynamic therapy.

Contributors

  • Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences,
  • Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences,
  • Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences,
author
  • Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences,
author
  • Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences,
  • Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences,
  • Faculty of Chemistry, Nicolaus Copernicus University in Torun,
  • Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences,

References

  • [1] Skołucka-Szary K, Rieske P, Piaskowski S; (2016) Praktyczne aspekty zastosowania chityny i jej pochodnych w leczeniu ran. Chemik 70:89–98.
  • [2] Struszczyk MH; (2002) Chitin and chitosan. Part I. Properties and production. Polimery 47:316–325. DOI: 10.14314/polimery.2002.316
  • [3] Khoushab F, Yamabhai M; (2010) Chitin Research Revisited. Mar Drugs 8:1988–2012. DOI: 10.3390/md8071988
  • [4] Rudall KM, Kenchington W; (1973) The chitin system. Biol Rev 48:597–633. DOI: 10.1111/j.1469-185X.1973.tb01570.x
  • [5] Rudall KM; (1969) Chitin and its association with other molecules. J Polym Sci, C: Polym Symp 28:83–102. DOI: 10.1002/polc.5070280110
  • [6] Liaqat F, Eltem R; (2018) Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 184:243–259. DOI: 10.1016/j.carbpol.2017.12.067
  • [7] Elieh-Ali-Komi D, Hamblin MR; (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411-427.
  • [8] Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH; (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517. DOI: 10.3390/md8051482
  • [9] Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K; (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10:462. DOI: 10.3390/polym10040462
  • [10] Zhang LP, Gong WJ, Pan Y, Zhang YZ; (2008) Fabrication of multilayer-filmmodified gold electrode composed of myoglobin, chitosan, and polyelectrolytewrapped multi-wall carbon nanotubes by layer-by-layer assembled technique and electrochemical catalysis for hydrogen peroxide and trichloroacetic acid. Russ J Electrochem 44:1271–1279. DOI: 10.1134/S1023193508110128
  • [11] Zhang Y, Sun T, Jiang C; (2018) Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 8:34–50. DOI: 10.1016/j.apsb.2017.11.005
  • [12] Croisier F, Jérôme C; (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. DOI: 10.1016/j.eurpolymj.2012.12.009
  • [13] Pieklarz K, Tylman M, Modrzejewska Z; (2018) Applications of chitosan–graphene oxide nanocomposites in medical science: a review. PCACD 23:5–24. DOI: 10.15259/PCACD.23.001
  • [14] Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi-Pirouz A; (2019) Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci 6:1801664. DOI: 10.1002/advs.201801664
  • [15] Sikora A, Chełminiak-Dudkiewicz D, Siódmiak T, Tarczykowska A, Sroka WD, Ziegler-Borowska M, Marszałł MP; (2016) Enantioselective acetylation of (R, S)-atenolol: The use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation. J Mol Catal B: Enzym 134:43–50. DOI: 10.1016/j.molcatb.2016.09.017
  • [16] Zhang H, Oh M, Allen C, Kumacheva E; (2004) Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5:2461–2468. DOI: 10.1021/bm0496211
  • [17] Rhee I, Hong S, Chang Y; (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phy Soc 56:868–873. DOI: 10.3938/jkps.56.868
  • [18] Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, González-Carreño T, Morales MP, Serna CJ; (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 42:224002. DOI: 10.1088/0022-3727/42/22/224002
  • [19] Sasaki T, Iwasaki N, Kohno K, Kishimoto M, Majima T, Nishimura S-I, Minami A; (2008) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res 86A:969–978. DOI: 10.1002/jbm.a.31724
  • [20] Marszałł MP, Sroka WD, Sikora A, Chełminiak D, Ziegler-Borowska M, Siódmiak T, Moaddel R; (2016) Ligand fishing using new chitosan based functionalized androgen receptor magnetic particles. J Pharm Biomed Anal 127:129–135. DOI: 10.1016/j.jpba.2016.04.013
  • [21] Ziegler-Borowska M, Mylkie K, Kozlowska M, Nowak P, Chelminiak-Dudkiewicz D, Kozakiewicz A, Ilnicka A, Kaczmarek-Kedziera A; (2019) Effect of geometrical structure, drying, and synthetic method on aminated chitosan-coated magnetic nanoparticles utility for hsa effective immobilization. Molecules 24:1925. DOI: 10.3390/molecules24101925
  • [22] Momenimovahed Z, Salehiniya H; (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med. Press) 11:151–164. DOI: 10.2147/BCTT.S176070
  • [23] Meder J, Didkowska J; (2011) Podstawy onkologii klinicznej. Centrum Medyczne Kształcenia Podyplomowego, Warszawa
  • [24] Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández Á; (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3:3279–3330. DOI: 10.3390/cancers3033279
  • [25] Lin J, Wan MT; (2014) Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145-163. DOI: 10.2147/CCID.S35334
  • [26] Zheng Y, Li Z, Chen H, Gao Y; (2020) Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 144:105213. DOI: 10.1016/j.ejps.2020.105213
  • [27] García-Sánchez M, Rojas-González F, Menchaca-Campos E, Tello-Solís S, Quiroz-Segoviano R, Diaz-Alejo L, Salas-Bañales E, Campero A; (2013) Crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within sol-gel matrices. Molecules 18:588–653. DOI: 10.3390/molecules18010588
  • [28] Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M, Hamblin MR; (2020) Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 232:119707. DOI: 10.1016/j.biomaterials.2019.119707
  • [29] Wolinsky JB, Colson YL, Grinstaff MW; (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Controlled Release 159:14–26. DOI: 10.1016/j.jconrel.2011.11.031
  • [30] Ferreira DP, Conceição DS, Calhelha RC, Sousa T, Socoteanu R, Ferreira ICFR, Vieira Ferreira LF; (2016) Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer. Carbohydr Polym 151:160–171. DOI: 10.1016/j.carbpol.2016.05.060
  • [31] Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S; (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71. DOI: 10.1186/s12951-018-0392-8
  • [32] Belali S, Karimi AR, Hadizadeh M; (2018) Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. Int J Biol Macromol 10:437–448. DOI: 10.1016/j.ijbiomac.2017.12.169
  • [33] Durantini E; (2006) Photodynamic Inactivation of Bacteria. Curr Bioact Compd 2:127–142. DOI: 10.2174/157340706777435158
  • [34] Castro KADF, Moura NMM, Fernandes A, Faustino MAF, Simões MMQ, Cavaleiro JAS, Nakagaki S, Almeida A, Cunha Â, Silvestre AJD, Freire CSR, Pinto RJB, Neves M da GPMS; (2017) Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials. Dyes Pigm
  • 137:265–276. DOI: 10.1016/j.dyepig.2016.10.020
  • [35] Castro KADF, Moura NMM, Figueira F, Ferreira RI, Simões MMQ, Cavaleiro JAS, Faustino MAF, Silvestre AJD, Freire CSR, Tomé JPC, Nakagaki S, Almeida A, Neves MGPMS; (2019) New materials based on cationic porphyrins conjugated to chitosan or titanium dioxide: synthesis, characterization and antimicrobial efficacy. Int J Mol Sci 20:2522. DOI: 10.3390/ijms20102522
  • [36] Chełminiak-Dudkiewicz D, Ziegler-Borowska M, Stolarska M, Sobotta L, Falkowski M, Mielcarek J, Goslinski T, Kowalonek J, Węgrzynowska-Drzymalska K, Kaczmarek H; (2018) The chitosan – porphyrazine hybrid materials and their photochemical properties. J Photochem Photobiol, B 181:1–13. DOI: 10.1016/j.jphotobiol.2018.02.021
  • [37] Jahanbin T, Sauriat-Dorizon H, Spearman P, Benderbous S, Korri-Youssoufi H; (2015) Development of Gd(III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging. Mater Sci Eng, C 52:325–332. DOI: 10.1016/j.msec.2015.03.007
  • [38] Hein S, Wang K, Stevens WF, Kjems J; (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24:1053–1061. DOI: 10.1179/174328408X341744
  • [39] Trapani A, Sitterberg J, Bakowsky U, Kissel T; (2009) The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int J Pharm 375:97–106. DOI: 10.1016/j.ijpharm.2009.03.041
  • [40] Sun Y, Wang Y, Li J, Ding C, Lin Y, Sun W, Luo C; (2017) An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 174:809–818. DOI: 10.1016/j.talanta.2017.07.001
  • [41] Mal’shakova MV, Pylina YI, Belykh DV; (2019) Novel hydrophilic galactoseconjugated chlorin e6 derivatives for photodynamic therapy and fluorescence imaging. Bioorg Med Chem Lett 29:2064–2069. DOI: 10.1016/j.bmcl.2019.07.019
  • [42] Lu C, Sun F, Liu Y, Xiao Y, Qiu Y, Mu H, Duan J; (2019) Versatile chlorin e6-based magnetic polydopamine nanoparticles for effectively capturing and killing MRSA. Carbohydr Polym 218:289–298. DOI: 10.1016/j.carbpol.2019.05.007
  • [43] Jeong Y-I, Cha B, Lee HL, Song YH, Jung YH, Kwak TW, Choi C, Jeong G-W, Nah JW, Kang DH; (2017) Simple nanophotosensitizer fabrication using watersoluble chitosan for photodynamic therapy in gastrointestinal cancer cells. Int J Pharm 532:194–203. DOI: 10.1016/j.ijpharm.2017.08.128
  • [44] Shton IO, Sarnatskaya VV, Prokopenko LV, Gamaleia NF; (2015) Chlorin e6 combined with albumin nanoparticles as a potential composite photosensitizer for photodynamic therapy of tumors. Exp Oncol 37:250–254. DOI: 10.31768/2312-8852.2015.37(4):250-254
  • [45] Unal B, Akarsu M, Kilincarslan R, Demirkol DO, Timur S, Cetinkaya B; (2019) Novel fluorescence assay using μ-wells coated by BODIPY dye as an enzymatic sensing platform. Measurement 135:145–150. DOI: 10.1016/j.measurement.2018.11.020
  • [46] Wang X, Wolfbeis OS; (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761. DOI: 10.1039/C4CS00039K
  • [47] Kue CS, Ng SY, Voon SH, Kamkaew A, Chung LY, Kiew LV, Lee HB; (2018) Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: an updated review. Photochem Photobiol Sci 17:1691–1708. DOI: 10.1039/C8PP00113H
  • [48] Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K; (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88. DOI: 10.1039/C2CS35216H
  • [49] Taki S, Ardestani MS; (2019) Novel nanosized AS1411–chitosan–BODIPY conjugate for molecular fluorescent imaging. Int J Nanomedicine Volume 14:3543–3555. DOI: 10.2147/IJN.S202561
  • [50] Löbbert G; (2000) Phthalocyanines. In: Wiley-VCH Verlag GmbH & Co. KGaA (ed) Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p 181-213
  • [51] Neagu M, Constantin C, Tampa M, Matei C, Lupu A, Manole E, Ion R-M, Fenga C, Tsatsakis AM; (2016) Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma. Oncotarget 7: 69718-69732. DOI: 10.18632/oncotarget.11942
  • [52] Bayat F, Karimi AR; (2019) Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent. Int J Biol Macromol 129:927–935. DOI: 10.1016/j.ijbiomac.2019.02.081
  • [53] Mantareva V, Kussovski V, Angelov I, Borisova E, Avramov L, Schnurpfeil G, Wöhrle D; (2007) Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem 15:4829–4835. DOI: 10.1016/j.bmc.2007.04.069
  • [54] Mantareva V, Kussovski V, Angelov I, Wöhrle D, Dimitrov R, Popova E, Dimitrov S; (2011) Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms. Photochem Photobiol Sci 10:91–102. DOI: 10.1039/B9PP00154A
  • [55] Donnelly RF, McCarron PA, Tunney MM; (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12. DOI: 10.1016/j.micres.2007.08.001
  • [56] de Souza TD, Ziembowicz FI, Müller DF, Lauermann SC, Kloster CL, Santos RCV, Lopes LQS, Ourique AF, Machado G, Villetti MA; (2016) Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules. Eur J Pharm Sci 83:88–98. DOI: 10.1016/j.ejps.2015.12.006
  • [57] Oluwole DO, Prinsloo E, Nyokong T; (2017) Photophysical behavior and photodynamic therapy activity of conjugates of zinc monocarboxyphenoxy phthalocyanine with human serum albumin and chitosan. Spectrochim Acta, Part A 173:292–300. DOI: 10.1016/j.saa.2016.09.032
  • [58] Tang F-X, Li H-C, Ren X-D, Sun Y, Xie W, Wang C-Y, Zheng B-Y, Ke M-R, Huang J-D; (2018) Preparation and antifungal properties of monosubstituted zinc(П) phthalocyanine-chitosan oligosaccharide conjugates and their quaternized derivatives. Dyes Pigm 159:439–448. DOI: 10.1016/j.dyepig.2018.07.004
  • [59] Tang F, Gao F, Xie W, Li S, Zheng B, Ke M, Huang J; (2020) Carboxymethyl chitosan-zinc(II) phthalocyanine conjugates: Synthesis, characterization and photodynamic antifungal therapy. Carbohydr Polym 235:115949. DOI: 10.1016/j.carbpol.2020.115949
  • [60] Hsieh Y-H, Chuang W-C, Yu K-H, Jheng C-P, Lee C-I; (2019) Sequential Photodynamic Therapy with Phthalocyanine Encapsulated Chitosan-Tripolyphosphate Nanoparticles and Flucytosine Treatment against Candida tropicalis. Pharmaceutics 11:16. DOI: 10.3390/pharmaceutics11010016

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3d99a1f3-9697-40ee-b6a9-c4929025f007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.