Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 27 | 135-153

Article title

BIOLOGICAL BEHAVIOUR OF CHITOSAN ELECTROSPUN NANOFIBROUS MEMBRANES AFTER DIFFERENT NEUTRALISATION METHODS

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan electrospun nanofibres were synthesised in two different trifluoroacetic acid (TFA)/dichloromethane (DCM) solvent ratios and then neutralised in aqueous and ethanol sodium-based solutions (NaOH and Na2CO3) to produce insoluble materials with enhanced biological properties for regenerative and tissue engineering applications. Structural, electronic, and optical properties and the swelling capacity of the prepared nanofibre membrane were studied by scanning electron microscopy, Fourier-transform infrared spectroscopy, and photoluminescence. Cell viability (with the U2OS cell line) and antibacterial properties (against Staphylococcus aureus and Escherichia coli) assays were used to assess the biomedical potential of the neutralised chitosan nanofibrous membranes. A 7:3 TFA/DCM ratio allows for an elaborate nanofibrous membrane with a more uniform fibre size distribution. Neutralisation in aqueous NaOH only maintains a partial fibrous structure. At the same time, neutralisation in NaOH ethanol-water maintains the structure during 1 month of degradation in phosphate-buffered saline and distilled water. All membranes demonstrate high biocompatibility, but neutralisation in ethanol solutions affects cell proliferation on materials made with 9:1 TFA/DCM. The prepared nanofibrous mats could constrain the growth of both gram-positive and gram-negative microorganisms, but 7:3 TFA/DCM membranes inhibited bacterial growth more efficiently. Based on structural, degradation, and biological properties, 7:3 TFA/DCM chitosan nanofibrous membranes neutralised by 70% ethanol/30% aqueous NaOH exhibit potential for biomedical and tissue engineering applications.

Year

Volume

27

Pages

135-153

Physical description

Contributors

  • Biomedical Research Center, Sumy State University
  • Biomedical Research Center, Sumy State University
author
  • Biomedical Research Center, Sumy State University
  • Institute of Atomic Physics and Spectroscopy, University of Latvia
  • Biomedical Research Center, Sumy State University
  • Biomedical Research Center, Sumy State University
author
  • Biomedical Research Center, Sumy State University
  • Biomedical Research Center, Sumy State University
author
  • Institute of Atomic Physics and Spectroscopy, University of Latvia
  • Institute of Atomic Physics and Spectroscopy, University of Latvia

References

  • [1] Rasouli R, Barhoum A, Bechelany M, Dufresne A; (2019) Nanofibers for biomedical and healthcare applications, Macromol Biosci 19(2). DOI:10.1002/mabi.201800256
  • [2] Contreras-Cáceres R, Cabeza L, Perazzoli G, Díaz A, López-Romero JM, Melguizo C, Prados J; (2019) Electrospun nanofibers: recent applications in drug delivery and cancer therapy. Nanomaterials 9(4). DOI:10.3390/nano9040656
  • [3] Shalumon KT, Binulal NS., Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R; (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4), 863-869. DOI:10.1016/j.carbpol.2009.03.009
  • [4] Prabaharan M; (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72, 1313-1322. DOI:10.1016/j.ijbiomac.2014.10.052
  • [5] Du H, Liu M, Yang X, Zhai G; (2015) The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov Today 20(8), 1004-1011. DOI:10.1016/j.drudis.2015.03.002
  • [6] Sun K, Li ZH; (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5(4), 342-361. DOI:10.3144/expresspolymlett.2011.34
  • [7] Nayak R; (2017) Experimental: melt electrospinning. Springer, Cham, 41-54.
  • [8] Pasricha R, Sachdev D; (2017) Biological characterization of nanofiber composites. In: Ramalingam M, Ramakrishna S (eds), Nanofiber composites for biomedical applications. Woodhead Publishing, Cambridge, 157-196.
  • [9] Ding B, Wang X, Yu J (eds); (2018) Electrospinning: nanofabrication and applications. Elsevier, Amsterdam.
  • [10] Rasouli R, Barhoum A, Bechelany M, Dufresne A (2019) Nanofibers for biomedical and healthcare applications. Macromol Biosci 19(2). DOI:10.1002/mabi.201800256
  • [11] Ngo DH, Vo TS, Ngo DN, Kang KH, Je JY, Pham HND, Byun HG, Kim SK; (2015) Biological effects of chitosan and its derivatives, Food Hydrocolloids 51. DOI:10.1016/j.foodhyd.2015.05.023
  • [12] Abrigo M, McArthur SL, Kingshott P; (2014) Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci 14(6), 772-792. DOI:10.1002/mabi.201300561
  • [13] Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M; (2021) Hemostatic and Tissue regeneration performance of novel electrospun chitosan-based materials. Biomedicines 9(6), 588. DOI:10.3390/biomedicines9060588
  • [14] Klossner RR, Queen HA, Coughlin AJ, Krause WE; (2008) Correlation of chitosan’s rheological properties and its ability to electrospin.Biomacromolecules 9(10), 2947- 2953. DOI:10.1021/bm800738u
  • [15] Deineka V, Sulaieva O, Pernakov N, Radwan-Pragłowska J, Janus L, Korniienko V, Husak Y, Yanovska A, Liubchak I, Yusupova A, Piątkowski M, Zlatska A, Pogorielov M; (2021) Hemostatic performance and biocompatibility of chitosanbased agents in experimental parenchymal bleeding. Mater Sci Eng C 120.DOI:10.1016/j.msec.2020.111740
  • [16] Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, Gomez Ribelles JL, Lanceros Mendez S; (2012) Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym 87(2), 1295-1301. DOI:10.1016/j.carbpol.2011.09.017
  • [17] Jayakumar R, SV, Furuike T, and Tamur H; (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. In: Eberli D (ed), Tissue Engineering, InTech Open, London. DOI:10.5772/8593
  • [18] Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Gómez Ribelles JL, & Lanceros-Mendez S; (2012) Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test 31(8), 1062-1069. DOI:10.1016/j.polymertesting.2012.07.010
  • [19] Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV; (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26(36), 7616-7627. DOI:10.1016/j.biomaterials.2005.05.036
  • [20] Qing H, Qiang A, Yandao G, Xiufang Z; (2011) Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med 22, 2791-2802.
  • [21] Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7(10), 2710-2714. DOI:10.1021/bm060286l
  • [22] Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F; (2018) Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018. DOI:10.1155/2018/3651480
  • [23] Phan DN, Lee H, Huang B, Mukai Y, Kim IS; (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26(3), 1781-1793. DOI:10.1007/s10570-018-2169-5.
  • [24] Ziel R, Haus A, Tulke A; (2008) Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J Memb Sci 323(2), 241-246. DOI:10.1016/j.memsci.2008.05.057
  • [25] Cremar L, Gutierrez J, Martinez J, Materon L, Gilkerson R, Xu F, Lozano K; (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomedicine J 5(1), 6-14. DOI:10.22038/nmj.2018.05.002
  • [26] Lin B, Luo Y, Teng Z, Zhang B, Zhou B, Wang Q; (2015) Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT 63(2), 1206-1213. DOI:10.1016/j.lwt.2015.04.049
  • [27] Zhang C, Yuan X, Wu L, Han Y, Sheng J; (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41(3), 423-432. DOI:10.1016/j.eurpolymj.2004.10.027
  • [28] Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK; (2019) Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol 126, 569-577. DOI:10.1016/j.ijbiomac.2018.12.193
  • [29] Dostert KH, O’Brien CP, Liu W, Riedel W, Savara A, Tkatchenko A, Schauermann, S, Freund HJ; (2016) Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): a combination of infrared reflection absorption spectroscopy and density functional theory studies. Surf Sci 650, 149-160. DOI:10.1016/j.susc.2016.01.026
  • [30] Vörös-Horváth B, Živković P, Bánfai K, Bóvári-Biri J, Pongrácz J, Bálint G, Pál S, Széchenyi A; (2022) Preparation and characterization of ACE2 receptor inhibitorloaded chitosan hydrogels for nasal formulation to reduce the risk of COVID-19 viral infection. ACS Omega 7(4), 3240-3253. DOI:10.1021/acsomega.1c05149
  • [31] Geng Z, Zhang H, Xiong Q, Zhang Y, Zhao H, Wang g; (2015) A fluorescent chitosan hydrogel detection platform for the sensitive and selective determination of trace mercury(II) in water. J Mater Chem A 3(38), 19455-19460. DOI:10.1039/c5ta05610a
  • [32] Anas NAA, Fen YW, Omar NAS, Ramdzan NSM, Daniyal W. M. E. M. M., Saleviter S, Zainudin AA.; (2019) Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Opt Laser Technol 120. DOI:10.1016/j.optlastec.2019.105724
  • [33] Moeini A, Cimmino A, Dal Poggetto G, Di Biase M, Evidente A, Masi M, Lavermicocca P, Valerio F, Leone A, Santagata G, Malinconico M; (2018) Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydr Polym 195, 631-641. DOI:10.1016/j.carbpol.2018.05.005
  • [34] Mi FL; (2005) Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission. Biomacromolecules 6(2), 975-987. DOI:10.1021/bm049335p
  • [35] Abbaspour M, Makhmalzadeh BS, Rezaee B, Shoja S, Ahangari Z; (2015) Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J Microbiol 8(10), 24239. DOI:10.5812/jjm.24239
  • [36] Arkoun M, Daigle F, Heuzey MC, Ajji A; (2017) Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4), 585. DOI:10.3390/molecules22040585
  • [37] Raafat D, Sahl HG; (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotechnol 2(2). 186-201. DOI:10.1111/j.1751-7915.2008.00080.x
  • [38] Zheng LY, Zhu JF; (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54(4), 527-530. DOI:10.1016/j.carbpol.2003.07.009
  • [39] Raafat D, Von Bargen K, Haas A, Sahl HG; (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12), 3764-3773. DOI:10.1128/AEM.00453-08

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3d8c2125-eff4-4d9c-a4ef-53f2fcdbea54
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.