PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 123 | 161-180
Article title

The variable phase approach: phase, amplitude and wave functions of the states for np- system for Argonne v18 potential

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Numerical calculations of the values of phase, amplitude and wave functions for the nucleon-nucleon potential Argonne v18 are carried out using the variable phase approach. Peculiarities of the behavior of these functions are described for coordinates up to 7 fm and with energies of interaction Еlab = 1; 50; 100; 150; 250; 350 MeV. 1S0-, 1P1-, 3P0-, 3P1-, 1D2-, 3D2-, 1F3-, 3F3-, 1G4-, 3G4- states for the np- system are considered. The obtained graphic materials for the indicated functions can help to give a better and more complete quantum mechanical representation of the scattering phase and scattering amplitudes for the neuron-proton scattering, as well as better understand and supplement the data for the problem of scalar amplitude and the full cross-section of the nucleon-nucleon scattering.
Discipline
Year
Volume
123
Pages
161-180
Physical description
Contributors
author
  • Department of Theoretical Physics, Uzhgorod National University, 54, Voloshyna St., Uzhgorod, UA-88000, Ukraine
References
  • [1] V.V. Babikov, The phase-function method in quantum mechanics. Moscow, Science, 1988.
  • [2] F. Calogero, Variable phase approach to potential scattering. New York and London, Academic Press, 1967.
  • [3] V.I. Zhaba. Calculation of phases of np- scattering for potentials Reid93 and Argonne v18 on the phase-function method, arXiv:nucl-th/1603.05382
  • [4] V.I. Zhaba. Calculation of phases of np- scattering up to Tlab=3 GeV for potentials Argonne group on the phase-function method. Probl. Atom. Scie. Tech. Vol. 5 (105), P. 29-32 (2016). arXiv:1604.06006
  • [5] R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).
  • [6] V.V. Babikov, Sov. Phys. Usp. 10, 271 (1967).
  • [7] P.M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
  • [8] G.F. Drukarev, ZhETF 19, 247 (1949).
  • [9] F. Calogero, Nuovo Cimento 27, 261 (1963).
  • [10] V.І. Zhaba, Uzhhorod Univ. Scien. Herald. Ser. Phys. 40, 106 (2016).
  • [11] V.G.J. Stoks et al., Phys. Rev. C 49, 2950 (1994).
  • [12] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
  • [13] N.N. Kalitkin, Numerical methods. Moscow, Science, 1978.
  • [14] А.Е. Mudrov, Numeral methods for PECM in languages Basic, Fortran and Pascal. Tomsk RASKO, 1991.
  • [15] A.I. Mazur et al., Bull. Russ. Acad. Sci.: Phys. 71, 754 (2007).
  • [16] V.І. Zhaba, Int. J. Mod. Phys. E 25, 1650088 (2016).
  • [17] V.І. Zhaba, Mod. Phys. Lett. A 31, 1650049 (2016).
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-3d23127f-70f7-456f-8592-0dd28b145a4b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.