Preferences help
enabled [disable] Abstract
Number of results
2019 | 123 | 161-180
Article title

The variable phase approach: phase, amplitude and wave functions of the states for np- system for Argonne v18 potential

Title variants
Languages of publication
Numerical calculations of the values of phase, amplitude and wave functions for the nucleon-nucleon potential Argonne v18 are carried out using the variable phase approach. Peculiarities of the behavior of these functions are described for coordinates up to 7 fm and with energies of interaction Еlab = 1; 50; 100; 150; 250; 350 MeV. 1S0-, 1P1-, 3P0-, 3P1-, 1D2-, 3D2-, 1F3-, 3F3-, 1G4-, 3G4- states for the np- system are considered. The obtained graphic materials for the indicated functions can help to give a better and more complete quantum mechanical representation of the scattering phase and scattering amplitudes for the neuron-proton scattering, as well as better understand and supplement the data for the problem of scalar amplitude and the full cross-section of the nucleon-nucleon scattering.
Physical description
  • Department of Theoretical Physics, Uzhgorod National University, 54, Voloshyna St., Uzhgorod, UA-88000, Ukraine
  • [1] V.V. Babikov, The phase-function method in quantum mechanics. Moscow, Science, 1988.
  • [2] F. Calogero, Variable phase approach to potential scattering. New York and London, Academic Press, 1967.
  • [3] V.I. Zhaba. Calculation of phases of np- scattering for potentials Reid93 and Argonne v18 on the phase-function method, arXiv:nucl-th/1603.05382
  • [4] V.I. Zhaba. Calculation of phases of np- scattering up to Tlab=3 GeV for potentials Argonne group on the phase-function method. Probl. Atom. Scie. Tech. Vol. 5 (105), P. 29-32 (2016). arXiv:1604.06006
  • [5] R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).
  • [6] V.V. Babikov, Sov. Phys. Usp. 10, 271 (1967).
  • [7] P.M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
  • [8] G.F. Drukarev, ZhETF 19, 247 (1949).
  • [9] F. Calogero, Nuovo Cimento 27, 261 (1963).
  • [10] V.І. Zhaba, Uzhhorod Univ. Scien. Herald. Ser. Phys. 40, 106 (2016).
  • [11] V.G.J. Stoks et al., Phys. Rev. C 49, 2950 (1994).
  • [12] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
  • [13] N.N. Kalitkin, Numerical methods. Moscow, Science, 1978.
  • [14] А.Е. Mudrov, Numeral methods for PECM in languages Basic, Fortran and Pascal. Tomsk RASKO, 1991.
  • [15] A.I. Mazur et al., Bull. Russ. Acad. Sci.: Phys. 71, 754 (2007).
  • [16] V.І. Zhaba, Int. J. Mod. Phys. E 25, 1650088 (2016).
  • [17] V.І. Zhaba, Mod. Phys. Lett. A 31, 1650049 (2016).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.