Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 63 | 2 | 73-77

Article title

Wstrząs krwotoczny a czynność serca

Content

Title variants

EN
Haemorrhagic shock and heart function

Languages of publication

PL

Abstracts

PL
W stanie wstrząsu krwotocznego oraz resuscytacji wpływ na czynność serca mają czynniki nerwowe, humoralne i produkowane miejscowo. W regulacji nerwowej wyróżnia się trójfazowe zmiany aktywności układu współczulnego i przywspółczulnego, a co za tym idzie, zmiany czynności serca. W pierwszej fazie dochodzi do tachykardii na skutek odbarczenia baroreceptorów tętniczych i odruchowego pobudzenia układu współczulnego, w fazie drugiej występuje bradykardia, jako następstwo odruchu Bezolda i Jarischa oraz zwiększenia aktywności układu przywspółczulnego i hamowania układu współczulnego. Trzecia faza regulacji charakteryzuje się ponownym wzrostem częstości rytmu serca, prawdopodobnie wskutek pobudzenia układu współczulnego. W pracy omówiono także wpływ na czynność serca czynników humoralnych (testosteron, estrogeny, prolaktyna, interleukina 6 [IL-6], siarkowodór) oraz produkowanych lokalnie (czynnik martwicy guza α [TNF-α]).
EN
During haemorrhagic shock and resuscitation heart function is infl uenced by nervous, humoral and local factors. Nervous regulation includes threephasic changes of the sympathetic and parasympathetic system activities. In the fi rst phase, tachycardia is observed as a response to a fall in blood pressure and baroreceptor-mediated increase of the sympathetic activity. The second phase, characterized by bradycardia, is associated with a Bezold-Jarisch refl ex and increased parasympathetic activity; in the third hipophase, heart rate increases again, probably due to sympathetic stimulation. In this review, we present also humoral (testosterone, estrogens, prolactin, interleukin 6 [IL-6], hydrogen sulphide) and the local factors (tumor necrosis factor α [TNF-α]) aff ecting heart function in hemorrhagic shock.

Discipline

Year

Volume

63

Issue

2

Pages

73-77

Physical description

Contributors

  • Zakład Podstawowych Nauk Medycznych SUM w Katowicach
  • Zakład Podstawowych Nauk Medycznych SUM w Katowicach
author
  • Zakład Podstawowych Nauk Medycznych SUM w Katowicach
author
  • Zakład Podstawowych Nauk Medycznych SUM w Katowicach, 41-902 Bytom, ul. Piekarska 18, tel. +48 32 397 65 30, fax +48 32 272 23 78

References

  • 1. Barcroft H., Edholm O.G., McMichael J., Sharpey-Schafer E.P. Posthaemorrhagic fainting, study by cardiac output and forearm fl ow. Lancet 1944; 15: 489–491
  • 2. Jacobsen J., Secher N.H. Heart rate during haemorrhagic shock. Clin. Physiol. Funct. Imag. 1992; 12: 607-686.
  • 3. Wisbach G., Tobias S., Woodman R., Spalding A., Lockette W. Preserving cardiac output with beta-adrenergic receptor blockade and inhibiting the Bezold-Jarisch refl ex during resuscitation from hemorrhage. J. Trauma 2007; 63: 26-32.
  • 4. Kan W.H., Hsu J.T., Ba Z.F. i wsp. p38 MAPK-dependent eNOS upregulation is critical for 17beta-estradiol-mediated cardioprotection following trauma-hemorrhage. Am. J. Physiol. Heart Circ. Physiol. 2008; 294: H2627-H2636.
  • 5. Mendelsohn M.E., Karas R.H. The protective eff ects of estrogen on the cardiovascular system. N. Engl. J. Med. 1999; 340: 1801-1811.
  • 6. Jarrar D., Wang P., Cioffi W.G., Bland K.I., Chaudry I.H. The female reproductive cycle is an important variable in the response to trauma-hemorrhage. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H1015-H1021.
  • 7. Hsu J. T., Hsieh Y.C., Kan W.H. i wsp. Role of p38 mitogen-activated protein kinase pathway in estrogen-mediated cardioprotection following trauma-hemorrhage. Am. J. Physiol. Heart Circ. Physiol. 2007; 292: H2982-H2987.
  • 8. Hsu J.T., Kan W.H., Hsieh Y.C. i wsp. Mechanism of estrogen-mediated improvement in cardiac function after traumahemorrhage: p38-dependent normalization of cardiac Akt phosphorylation and glycogen levels. Shock 2008; 30: 372-378.
  • 9. Yu H., Yang S., Choudhry M.A., Hsieh Y., Bland K.I., Chaudry I.H. Mechanism responsible for the salutary eff ects of fl utamide on cardiac performance after trauma- hemorrhagic shock: upregulation of cardiomyocyte estrogen receptors. Surgery 2005; 138: 85-92.
  • 10. Remmers D.E., Cioffi W.G., Bland K.I., Wang P., Angele M.K., Chaudry I.H. Testosterone: the crucial hormone responsible for depressing myocardial function in males after trauma-hemorrhage. Ann. Surg. 1998; 227: 790-799.
  • 11. Kohno H., Takahashi N., Shinohara T. i wsp. Receptor-mediated suppression of cardiac heat-shock protein 72 expression by testosterone in male rat heart. Endocrinology 2007; 148: 3148-3155.
  • 12. Yang S., Choudhry M.A., Hsieh Y. i wsp. Estrus cycle: infl uence on cardiac function following trauma-hemorrhage. Am. J. Physiol. Heart Circ. Physiol. 2006; 291: H2807–H2815.
  • 13. Yang S., Zheng R., Hu S. Mechanism of cardiac depression after trauma-hemorrhage: increased cardiomyocyte IL-6 and eff ect of sex steroids on IL-6 regulation and cardiac function. Am. J. Physiol. Heart Circ. Physiol. 2004; 287: H2183-H2191.
  • 14. Remmers D.E., Wang P., Cioffi W.G., Bland K.I., Chaudry I.H. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males. Am. J. Physiol. 1997; 273: H2919- H2925.
  • 15. Jarrar D., Wang P., Song G.Y. i wsp. Metoclopramide: a novel adjunct for improving cardiac and hepatocellular functions after trauma-hemorrhage. Am. J. Physiol. Endocrinol. Metab. 2000; 278: E90-E95.
  • 16. Zellweger R., Wichmann MW., Ayala A., Chaudry I.H. Metoclopramide: a novel and safe immunomodulating agent for restoring the depressed macrophage immune function after hemorrhage. J. Trauma 1998; 44: 70-77.
  • 17. Meng Z.H., Dyer K., Billiar T.R., Tweardy D.J. Essential role for IL-6 in postresuscitation infl ammation in hemorrhagic shock. Am. J. Physiol. Cell. Physiol. 2001; 280: C343-C351.
  • 18. Yu X.W., Kennedy R.H., Liu S.J. JAK2/ STAT3, not ERK1/2, mediates interleukin- 6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J. Biol. Chem. 2003; 278: 16304- 16309.
  • 19. Mok Y.Y., Atan M.S., Yoke Ping C. i wsp. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective eff ect of inhibitors of hydrogen sulphide biosynthesis. Br. J. Pharmacol. 2004; 143: 881-889.
  • 20. Shahani R., Klein L.V., Marshall J.G. i wsp. Hemorrhage-induced alpha-adrenergic signaling results in myocardial TNFalpha expression and contractile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2001; 28: H84-H92.
  • 21. Meldrum D.R., Shenkar R., Sheridan B.C., Cain B.S., Abraham E., Harken A.H. Hemorrhage activates myocardial NFkappaB and increases TNF-alpha in the heart. J. Mol. Cell Cardiol. 1997; 29: 2849- 2854.
  • 22. Meng X., Ao L., Song Y., Raeburn S.D., Fullerton D.A., Harken A.H. Signaling of myocardial depression in hemorrhagic shock: roles of Toll-like receptor 4 and p55 TNF-α receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005; 288: R600- R606.
  • 23. Meng X., Harken A.H. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depression. Shock 2002; 17: 345-353.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3c9756e7-6f88-4321-b49b-24652a655953
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.