Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 17 | 3 | 144–149

Article title

Duchenne muscular dystrophy: overview and future challenges

Content

Title variants

PL
Dystrofia mięśniowa Duchenne’a: przegląd literatury i wyzwania w przyszłości

Languages of publication

EN

Abstracts

EN
Duchenne muscular dystrophy is a muscle disease caused by mutation in the gene that encodes the cytoskeletal protein dystrophin. It is inherited in an X-linked recessive fashion. A number of therapies are continuously being developed to slow down the progression of the disease and increase patients’ life expectancy. Steroid use in Duchenne muscular dystrophy is associated with a lower mortality rate (hazard ratio = 0.24; 95% CI = 0.07–0.91; p = 0.0351). Although recent studies have concluded that prolonged steroid use is associated with short stature and overweight, a meta-analysis of 12 studies has shown that steroids can increase strength, muscle function, and quality of life. Restoration of dystrophin gene expression is the basis of genetically engineered therapies. Potential therapies of this type include exon skipping, the use of recombinant adenoassociated virus which delivers mini-dystrophin, and surrogate gene transfer. In their development, the common challenges are associated with the size of gene product and the origin of dystrophin gene expression. Stem cells are promising for future therapy. Regardless of the challenges and controversies associated with stem cells, several clinical trials show an increase of  muscle strength in patients who have received such therapies.
PL
Dystrofia mięśniowa Duchenne’a jest chorobą dziedziczoną w sposób recesywny, sprzężoną z chromosomem X, spowodowaną mutacjami w genie DMD kodującym białko dystrofinę. Obecnie opracowywane terapie mają na celu spowolnienie progresji choroby oraz przedłużenie przeżycia pacjentów. Leczenie z użyciem kortykosteroidów wiąże się z mniejszym ryzykiem zgonu (współczynnik ryzyka = 0,24; 95% CI = 0,07–0,91; p = 0,0351). Choć ostatnio prowadzone badania wykazały, że długotrwałe stosowanie kortykosteroidów przyczynia się do niskiego wzrostu i nadwagi, w metaanalizie 12 badań stwierdzono ich wpływ na zwiększenie siły mięśni, poprawę ich funkcji i lepszą jakość życia chorych. Odzyskanie ekspresji genu dystrofiny stanowi podstawę terapii genowych, w  tym metody pomijania zmutowanego egzonu (tzw. exon skipping), zastosowania rekombinowanych wirusów związanych z adenowirusami w celu wprowadzenia minidystrofiny oraz wymiany genu (gene transfer). Trudności związane z terapiami genowymi wiążą się z rozmiarem genu oraz pochodzeniem ekspresji dystrofiny. Inną obiecującą terapię stanowią komórki macierzyste. Bez względu na trudności i kontrowersje związane z leczeniem tego typu kilka badań klinicznych wykazało, że poprawia ono siłę mięśniową u osób z chorobą Duchenne’a.

Discipline

Year

Volume

17

Issue

3

Pages

144–149

Physical description

Contributors

  • Department of Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Department of Neurology, Faculty of Medicine, University of Surabaya, Surabaya, Indonesia
  • Department of Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

References

  • Adkin CF, Meloni PL, Fletcher S et al.: Multiple exon skipping strategies to by-pass dystrophin mutations. Neuromuscul Disord 2012; 22: 297–305.
  • Amato AA, Brooke MH: Disorders of skeletal muscle. In: Daroff RB, Fenichel GM, Jankovic J et al. (ed): Bradley’s Neurology in Clinical Practice. Volume 1: Principles of Diagnosis and Management. 6th ed., Elsevier Saunders, Philadelphia 2012: 2066–2075.
  • Angelini C, Peterle E: Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 2012; 31: 9–15.
  • Bendixen RM, Senesac C, Lott DJ et al.: Participation and quality of life in children with Duchenne muscular dystrophy using the International Classification of Functioning, Disability, and Health. Health Qual Life Outcomes 2012; 10: 43.
  • Beytía Mde L, Vry J, Kirschner J: Drug treatment of Duchenne muscular dystrophy: available evidence and perspectives. Acta Myol 2012; 31: 4–8.
  • Bowles DE, McPhee SW, Li C et al.: Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012; 20: 443–455.
  • Bushby K, Finkel R, Birnkrant DJ et al.; DMD Care Considerations Working Group: Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 2010; 9: 177–189.
  • Cirak S, Feng L, Anthony K et al.: Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 2012; 20: 462–467.
  • Consalvi S, Saccone V, Giordani L et al.: Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases. Mol Med 2011; 17: 457–465.
  • Escolar DM, Hache LP, Clemens PR et al.: Randomized, blinded trial of weekend vs daily prednisone in Duchenne muscular dystrophy. Neurology 2011; 77: 444–452.
  • Fletcher S, Adkin CF, Meloni P et al.: Targeted exon skipping to address “leaky” mutations in the dystrophin gene. Mol Ther Nucleic Acids 2012; 1: e48.
  • Hoffman EP, Bronson A, Levin AA et al.: Restoring dystrophin expression in Duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol 2011; 179: 12–22.
  • Hogrel JY, Zagnoli F, Canal A et al.: Assessment of a symptomatic Duchenne muscular dystrophy carrier 20 years after myoblast transplantation from her asymptomatic identical twin sister. Neuromuscul Disord 2013; 23: 575–579.
  • Ichim TE, Alexandrescu DT, Solano F et al.: Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260: 75–82.
  • Johnson EK, Zhang L, Adams ME et al.: Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS One 2012; 7: e43515.
  • Koo T, Popplewell L, Malerba A et al.: Genetic therapy for Duchenne muscular dystrophy: principles and progress. In: Hegde M, Ankala A (eds.): Muscular Dystrophy. Biomedical Sciences. InTech, London 2012: 441–460.
  • Lamb MM, West NA, Ouyang L et al.; Muscular Dystrophy Surveillance, Research, and Tracking Network (MD STARnet): Corticosteroid treatment and growth patterns in ambulatory males with Duchenne muscular dystrophy. J Pediatr 2016; 173: 207–213.e3.
  • Lovering RM, Porter NC, Bloch RJ: The muscular dystrophies: from genes to therapies. Phys Ther 2005; 85: 1372–1388.
  • Mafi R, Hindocha S, Mafi P et al.: Sources of adult mesenchymal stem cells applicable for musculoskeletal applications – a systematic review of the literature. Open Orthop J 2011; 5 Suppl 2: 242–248.
  • Malerba A, Kang JK, McClorey G et al.: Dual myostatin and dystrophin exon skipping by morpholino nucleic acid oligomers conjugated to a cell-penetrating peptide is a promising therapeutic strategy for the treatment of Duchenne muscular dystrophy. Mol Ther Nucleic Acids 2012; 1: e62.
  • Matthews E, Brassington R, Kuntzer T et al.: Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 2016; (5): CD003725.
  • McAdam LC, Mayo AL, Alman BA et al.: The Canadian experience with long-term deflazacort treatment in Duchenne muscular dystrophy. Acta Myol 2012; 31: 16–20.
  • Meregalli M, Farini A, Belicchi M et al.: Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J 2013; 280: 4251–4262.
  • Merlini L, Gennari M, Malaspina E et al.: Early corticosteroid treatment in 4 Duchenne muscular dystrophy patients: 14-year follow-up. Muscle Nerve 2012; 45: 796–802.
  • Mitrpant C, Fletcher S, Wilton SD: Personalised genetic intervention for Duchenne muscular dystrophy: antisense oligomers and exon skipping. Curr Mol Pharmacol 2009; 2: 110–121.
  • Moorwood C, Lozynska O, Suri N et al.: Drug discovery for Duchenne muscular dystrophy via utrophin promoter activation screening. PLoS One 2011; 6: e26169.
  • Moxley RT 3rd, Ashwal S, Pandya S et al.; Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society: Practice parameter: corticosteroid treatment of Duchenne dystrophy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2005; 64: 13–20.
  • Nardes F, Araújo AP, Ribeiro MG: Mental retardation in Duchenne muscular dystrophy. J Pediatr (Rio J) 2012; 88: 6–16.
  • Passamano L, Taglia A, Palladino A et al.: Improvement of survival in Duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol 2012; 31: 121–125.
  • Périé S, Trollet C, Mouly V et al.: Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 2014; 22: 219–225.
  • Rosenkranz S: TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004; 63: 423–432.
  • Schram G, Fournier A, Leduc H et al.: All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in Duchenne muscular dystrophy. J Am Coll Cardiol 2013; 61: 948–954.
  • Sharma A, Sane H, Badhe P et al.: A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients. Cell Transplant 2013; 22 Suppl 1: S127–S138.
  • Sharma A, Sane H, Paranjape A et al.: Autologous bone marrow mononuclear cell transplantation in Duchenne muscular dystrophy – a case report. Am J Case Rep 2014; 15: 128–134.
  • Sienkiewicz D, Kulak W, Okurowska-Zawada B et al.: Duchenne muscular dystrophy: current cell therapies. Ther Adv Neurol Disord 2015; 8: 166–177.
  • Spurney CF: Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle Nerve 2012; 44: 8–19.
  • Strehle EM, Straub V: Recent advances in the management of Duchenne muscular dystrophy. Arch Dis Child 2015; 100: 1173–1177.
  • Vella JB, Thompson SD, Bucsek MJ et al: Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: implications for muscle regeneration and repair. PLoS One 2011; 6: e29226.
  • Wein N, Alfano L, Flanigan KM: Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr Clin North Am 2015; 62: 723–742.
  • Wilton SD, Fletcher S: Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents. Appl Clin Genet 2011; 4: 29–44.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3c39c6f5-23a7-42e8-b4d1-009d6b263859
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.