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ABSTRACT  

The aim of this paper is to characterize for every k ≥ 1 all (l + 3)-connected graphs G on n ≥ 3 

vertices satisfying P(n + k): for 

each pair of vertices x and y in G, such that there is a path system S of length k with l internal vertices 

which components are paths of length at most 2 satisfying:  

 such that 

S is not contained in any hamiltonian cycle of G. 

 

Keywords: Cycle, hamiltonian cycle, matching, path  

 

 

 

1.  INTRODUCTION  

 

We consider only finite graphs without loops and multiple edges. By V or V(G) we 

denote the vertex set of graph G and respectively by E or E(G) the edge set of G. By d(x,G) or 

d(x) we denote the degree of a vertex x in the graph G and by d(x,y) or dG(x,y) the distance 

between x and y in G.  
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Definition 1.1. (cf [7]) Let k,s1,…sl be positive integers. We call S a path system of length k if 

the connected components of S are paths:  

 

And  ∑ i=1
lsi = k.  

 

Let S be a path system of length k and let x ∈ V(S). We shall call x an internal vertex if 

x is an internal vertex (cf [2]) in one of the paths P1,…,Pl.  

If q denotes the number of internal vertices in a path system S of length k then 0 ≤ q ≤ k 

- 1. If q = 0 then S is a k-matching (i.e. a set of k independent edges).  

Let G be a graph and let S be a path system of length k in G. Let paths P1 : x0
1x1

1…xs1
1, 

…, Pl : x0
lx1

l…xsl
l be components of S. We can define a new graph  G̃   and a matching MS in  

 

 

 

Let H be a subgraph or a matching of G. By G\H we denote the graph obtained from G 

by the deletion of the edges of H.  

 

Definition 1.2. F is an H-edge cut-set of G if and only if F ⊂ E(H) and G\F is not connected.  

 

Definition 1.3. F is said to be a minimal H-edge cut-set of G if and only if F is an H-edge cut-

set of G which has no proper subset being an edge cut-set of G.  

 

Definition 1.4. (cf [5]) Let G be a graph on n ≥ 3 vertices and k ≥ 0. G is k-edge-hamiltonian 

if for every path system P of length at most k there exists a hamiltonian cycle of G containing 

P.  

 

Let G be a graph and H ⊂ G a subgraph of G. For a vertex x ∈ V(G) we define the set 

NH(x) = {y ∈ V(H) : xy ∈ E(G)}. Let H and D be two subgraphs of G. E(D,H) = {xy ∈ E(G) : x 

∈ V(D) and y ∈ V(H)}. For a set of vertices A of a graph G we define the graph G(A) as the 

subgraph induced in G by A.  

In the proof we will only use oriented cycles and paths. Let C be a cycle and x ∈ V (C), 

then x- is the predecessor of x and x+ is its successor. We denote the number of components of 

a graph G by ω(G).  
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Definition 1.5. (cf [1]) Let W be a property defined for all graphs of order n and let k be a 

non-negative integer. The property W is said to be k-stable if whenever G + xy has property W 

and d(x,G) + d(y,G) ≥ k then G itself has property W.  

J.A. Bondy and V. Chvátal [1] proved the following theorem, which we shall need in the 

proof of our main result:  

 

Theorem 1.1. Let n and k be positive integers with k ≤ n - 3. Then the property of being k-

edge-hamiltonian is (n + k)-stable.  

 

In 1960 O. Ore [6] proved the following:  

 

Theorem 1.2. Let G be a graph on n ≥ 3 vertices. If for all nonadjacent vertices x,y ∈ V(G) 

we have  

 
 

then G is hamiltonian.  

 

Geng-Hua Fan [3] has shown:  

 

Theorem 1.3. Let G be a 2-connected graph on n ≥ 3 vertices. If G satisfies  

 

 
 

for each pair of vertices x and y in G, then G is hamiltonian.  

The condition for degree sum in Theorem 1.2 is called an Ore condition or an Ore type 

condition for graph G and the condition P(k) is called a Fan condition or a Fan type condition 

for graph G.  

Later many Fan type theorems and Ore type theorems has been shown.  

Now we shall present Las Vargnas [8] condition n,s.  

 

Definition 1.6. Let G be graph on n ≥ 2 vertices and let s be an integer such that 0 ≤ s ≤ n. G 

satisfies Las Vargnas condition n,s if there is an arrangement x1,…,xn of vertices of G such 

that for all i,j if  

 

 

then d(xi,G) + d(xj,G) ≥ n + s.  

 

Las Vargnas [8] proved the following theorem:  

 

Theorem 1.4. Let G be a graph on n ≥ 3 vertices and let 0 ≤ s ≤ n- 1. If G satisfies n,s then 

G is s-edge hamiltonian.  
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Note that condition n,s is weaker then Ore condition.  

Later Skupień and Wojda proved that the condition n,s is sufficient for a graph to have 

a stronger property (for details see [7]). Wojda [9] proved the following Ore type theorem:  

 

Theorem 1.5 Let G be a graph on n ≥ 3 vertices, such that for every pair of nonadjacent 

vertices x and y  

 
 

Then every matching of G lies in a hamiltonian cycle.  

 

In 1996 G. Gancarzewicz and A. P. Wojda [4] proved the following Fan type theorem:  

 

Theorem 1.6. Let G be a 3-connected graph of order n ≥ 3 and let M be a k-matching in G. If 

G satisfies P(n + k) :  

 
 

for each pair of vertices x and y in G, then M lies in a hamiltonian cycle of G or G has a 

minimal odd M-edge cut-set.  

In this paper we shall find a Fan type condition under which every path system of length 

k in a graph G lies in a hamiltonian cycle.  

For notation and terminology not defined above a good reference should be [2].  

 

 

2.  RESULT  

 

Theorem 2.1. Let G be a graph on n ≥ 3 vertices and let S be a path system of length k with l 

internal vertices which components are paths of length at most 2 such that if P :  u1u2u3 ⊂ S 

and d(u1,G), d(u2,G) ≥  
n+k

2
     then d(u3,G) ≥  

n+k

2
      . If G is (l + 3)-connected and G satisfies 

P(n + k) :  

 
 

for each pair of vertices x and y in G, then S lies in a hamiltonian cycle of G or the graph 

has a minimal odd MS-edge cut-set.  

Note that under assumptions of Theorem 2.1 we have 0 ≤ l ≤⌊ ⌋ .  
It is clear that Theorem 1.6 is a simple consequence of Theorem 2.1.  

 

 

3.  PROOF  

 

Proof of Theorem 2.1. 
Consider G and S as in the  assumptions of Theorem 2.1.  

We can now define the set A: 
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Note that if x and y are nonadjacent vertices of A then the graph obtained from G by the 

addition of the edge xy also satisfies the assumptions of the theorem. Therefore and by 

Theorem 1.1 we may assume that:  

 

 

(3.1) 

 

By (3.1) A induces a complete subgraph G(A) of the graph G. Let GV \ A be a graph 

obtained from G by deletion of vertices of the graph G(A) (i.e. vertices from the set A).  

Now consider a component D of the graph GV \ A.  

Suppose that there exist two nonadjacent vertices in D. Since D is connected we have two 

vertices x and y in D such that dG(x,y) = 2 and by the assumption that G satisfies P(n + k) we 

have x ∈ A or y ∈ A, a contradiction.  

So we can assume that every component of GV \ A is a complete graph Kι, ι ∈ I, joined 

with G(A) by at least l + 3 edges.  

If Kι0,Kι1 ∈{Kι}ι∈I are such that ι0 ≠ ι1 then:  

 

 

(3.2) 

 

In fact, suppose that N(Kι0) ∩N(Kι1) ≠∅. Then we have a vertex y ∈ Kι0 and a vertex y′∈ 

Kι1 such that dG(y,y′) = 2 and by P(n + k) either y ∈ A or y′∈ A. This contradicts the fact that 

Kι0 and Kι1 are two connected components of GV \ A.  

If C ⊂ G is a cycle in G then be GV \ C we denote a graph obtained from G by deletion 

of vertices of the cycle C.  

The graph G consists of a complete graph GV \ A and of a family of complete 

components {Kι}ι∈I.  

Let K ∈{Kι}ι∈I.  

Let P : u1u2u3 be a path of length 2 from S. P is called a A-ear if u1, u3 ∈ A and u2 ∈ 

V(K), and respectively a K-ear if u1, u3 ∈ V(K) and  u2∉ V(K) (in this case u2 ∈ A).  

If E(K,A) ∩ E(S) ≠∅, then in E(K,A) ∩ E(S) we can have a family of ears and a number 

of edges from E(S) which does not form any ear.  

Now we shall define a cycle C. First consider a path containing only all A-ears. Next we 

add to this path all remaining vertices from A and all edges from the set E(S) ∩ E(G(A)). All 

those edges and vertices form the cycle C.  

Note that the cycle C performs the following conditions:  

∙ C contains all edges of E(S) ∩ E(GV \ A) and all vertices of A. (3.3)  

∙ If Kι0 and Kι1are two different components of GV \ C then 
  

 
N(Kι0) ∩ N(Kι1) = ∅. (3.4)  

 
∙ Let x∉ V (C), y ∈ V (C) and xy ∈ E(G) then: (3.5)  

 

 
if y is not an internal vertex of S, then y ∈ A, 

  

 
if yˉ is not an internal vertex of S, then y-∈ A, 
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 if y+ is not an internal vertex of S, then y+ ∈ A. 
  

Such cycle exists since GV \ A is a complete graph and G satisfies (3.2).  

Hence G is (l + 3)-connected, every component of GV \ C is a complete graph joined 

with C by at least 3 edges which ends are not internal vertices of S.  

Let K be a connected component of GV \ C.  

We shall show that we can extend the cycle C over all vertices of K, over all edges of S 

in K and over all edges of S joining K with C preserving the properties (3.3) — (3.5) or that 

the graph has a minimal odd MS-edge cut-set.  

 

Case 1  
 

Among the edges joining K with C there are no edges from path system S. Since G is (l 

+ 3)-connected K is joined with C by at least 3 edges which ends are not internal vertices of S. 

We have xiyi such that xi ∈ K,yi ∈ C and yi
-,yi,yi

+ ∈ A, for i = 1,2,3. We can assume that 

vertices x1, x2, are joined by one path P from S. Here P is directed from x2 to x1. 

 

 

Suppose that also y1y1
+, y2y2

-∈ E(S). If y3y3
+ ∈ E(S) (then y3 is a start vertex of one path 

from S directed towards x1) we can consider the cycle (see Figure (3.1)):  

 

 

(3.6) 

 

where v1…vk is a path containing all  remaining vertices from the set  

 

 
 

and edges from the set (E(S) ∩ E(K)) \ E(P).  
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when y3
-y3 ∈ E(S) we can carry out similar construction of cycle C′.  

 

 
 

Note that we can do the same if y1 and y2 joined by one path from S.  

If y2 and y3 are end vertices of the same path from S or y2y2
+, y3y3

-∈ E(S) we can carry 

out a similar construction.  

Suppose that y1y1
+ ∈ E(S). We can consider the cycle:  

 

 
 

Supposing that y1
-y1, y3

-y3 ∈ E(S) a good extension of C should be the cycle:  

 

 
 

The last two cycles are good also if y2 and y3 are end vertices of the same path from S.  

when yiy1
+ ∈ E(S) for i = 1,…,3 we can define C′ as in (3.6).  

It is clear that the new cycle C′ fulfills (3.3) — (3.5) and is an extension of C such that  

 

 

(3.7) 

 

If among the edges joining K with C there are no edges from path system S then all 

other situations can be reduced to those presented above.  

 

Case 2  
 

Among the edges joining K with C there are some edges from path system S.  

Since G is (l + 3)-connected K may be joined with C by a family of K-ears and at list 

three edges which ends are not internal vertices of S.  

Hence G and S satisfies the following condition: if P :  u1u2u3 ⊂ S and d(u1,G), d(u2,G) 

≥  then d(u3,G) ≥  edges from E(C,K) ∩ E(S) may be as on Figure (3.2).  
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The graph has a minimal odd MS-edge cut-set if there is a component K of GV \ C 

which is joined with cycle C only by an odd number of edges from E(S) or an odd number of 

edges from E(S) and edges from E(G) \ E(S) with at least one end vertex in the set of internal 

vertices of path system S. In those cases the theorem is proved, so we may assume that has 

no minimal odd MS-edge cut-set 

 

Subcase 2.1.  
 

Among edges joining K with C we have an even number of edges from E(S), say s = 2r, 

(r ≥ 1) which does not form any ear.  

So we have vertices x1,…,x2r ∈ K and y1,…,y2r ∈ C such that xiyi ∈ E(S), for i = 1,…,2r. 

We can assume that each edge xiyi is in path of length 2 from path system S. Then we have 

vertices xi
+ ∈ V(K) such that xi

+xi ∈ E(S), for i = 1,…,2r.  

Let u, v ∈ V(C) be such that all edges from E(C,K) ∩ E(S) lying between u and v belong 

to some ears. In the cycle C we have a path W :  uc1…ckv ⊂ C. We shall define a new path 

Q(u,v). If u and v are not in any ear. The path Q(u,v) is a path joining u with v such that E(W) 

∩ E(S) ⊂ E(Q(u,v)) and Q(u,v) contains all ci such that ci is not an internal vertex of a K-ear. 

In other words Q(u,v) arises from W by removing internal vertices of all K-ears. It is possible 

because if ci is an internal vertex of a K-ear then ci
-, ci

+ ∈ A.  

When u is internal vertex of a K-ear, then we start the path Q(u,v) from the first vertex ci 

which is not internal vertex of any K-ear. If v is internal vertex of a K-ear, then we end the 

path Q(u,v) from the last vertex ci which is not internal vertex of any K-ear.  

The construction of Q(u,v) is shown on figures (3.3) — (3.5).  
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First consider the path PK containing only all K-ears. Now we can define the extension 

of the cycle C as follows (see Figure (3.6) (for r = 2)):  

 

 

 

where x2r-1
+v1…vsx2r

+ is a path containing all remaining vertices of K and edges of E(S) ∩ 

E(K), this path exists because K is complete.  

It is clear that the new cycle C′ fulfils (3.3) — (3.5) and (3.7).  
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Subcase 2.2. 

  

Among edges joining K with C we have an odd number of edges from E(S), say s = 2r - 

1, (r ≥ 1) which does not form any ear.  

So we have vertices x1,…,x2r-1 ∈ V(K) and y1,…,y2r-1 ∈ V(C) such that xiyi ∈ E(S). We 

can assume that each edge xiyi is in path of length 2 from path system S. Then we have 

vertices xi
+ ∈ V(K) such that xi

+xi ∈ E(S), for i = 1,…,2r - 1.  

Since we have assumed that has no minimal odd MS-edge cut-set we have at least one 

edge say xy, (x ∈ K, y ∈ C) such that xy∉ E(S), x and y are not an internal vertices of S.  

We shall consider four subcases according as x or y are extremities of an edge from the 

set E(S).  

Suppose that  y ∉ {y1,…,y2r-1} and x ∉ {x1,…,x2r-1}. In this case we have a vertex yi0 ∈ V 

(C), (i0 ∈{1,…,2r - 1}) such that on the cycle C the vertices are ordered as follows: 

yi0…y…yi0+1.  

Consider a path xv1…vsxi0+1
+xi0+1 containing all vertices from the set  

V(K) \{x1,x1
+,…,xi0,xi0

+,xi0+2,xi0+2
+,…,x2r-1,x2r-1

+} all K-ears and all edges from E(S) ∩ 

E(K).  

If y-y ∈ E(S) consider the following cycle C′ :  

 

 

 

satisfying properties: (3.2) — (3.5) and (3.7).  

when r = 1 the edge xy must be independent with all xiyi, so now we have r ≥ 2.  

Suppose that for y∉{y1,…,y2r-1} and there is an i0 ∈{1,…,2r - 1} such that x = xi0. In this 

case xi0xi0
+ E(S).  

If yy-∈ E(S) then we define a new cycle as follows:  

 

 
 

and consider the complete graph D obtained from K by deletion of the vertex xi0.  

D is a component of GV \ . Note that and D satisfies conditions (3.3) — (3.5) and 

(3.7). Since r ≥ 2 D is joined with by an even number of edges from E(S), which does not 

form any ear and then we can proceed as in subcase (2.1).  

Suppose that for some i0,j0 ∈{1,…,2r - 1} x = xi0, y = yj0, and (i0 ≠j0).  

First consider the case r = 2 and vertices y1, y2, y3 are ordered in C as follows: y1…y2…y3.  

We can assume that y = y1, x = x3 (x3x3
+        E(S)) and then consider the cycle:  

 

 
 

where x1v1…vsx2 is a path containing all remaining vertices from K all K-ears and all edges 

from E(S) ∩ E(K).  

Again the cycle C′ has properties: (3.2) — (3.5) and (3.7).  
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when r > 2 we have ylxl ∈ E(S) and we assume that in the cycle C vertices are ordered as 

follows: yj0…yl…yi0. Now we can define a new cycle :  

 

 

 

and consider the complete graph D obtained from K by deletion of the vertices xi0, xl and xj0.  

D is a component of GV \ . Note that and D satisfies conditions (3.3) — (3.5) and 

(3.7). Since r > 2 D is joined with by an even number of edges from E(S), which does not 

form any ear and a family of ears, so we can proceed as in subcase (2.1).  

 

Subcase 2.3. 
 

Among edges from E(S) joining K with C we have only edges which are forming K-

ears.  

Hence G is l + 3 connected we have also at least 3 edges from E(G) \ E(S) which ends 

are not internal vertices of S.  

This case is similar to the case 1. The only difference is fact that we have K-ears, but 

using paths Q(u,v) we can extend the cycle as in case 1.  

In all cases we have extended the cycle C, so the proof is complete.  

 

 

4.  CONCLUSIONS   

 

The proof of Theorem 2.1 is an example of application of the closure technique. Note 

that the construction of the cycle C in the closure of the graph G is algorithmic but 

unfortunately it is possible that the cycle is using edges that does not belong to the initial 

graph. 

Our result is an extension of Theorem 1.6. 
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