Preferences help
enabled [disable] Abstract
Number of results
2016 | 47 | 2 | 89-111
Article title

Effect of temperature on thermo-physical properties of pyrazolo quinazoline derivatives by ultrasonic studies

Title variants
Languages of publication
Density (ρ), Sound velocity (U) and viscosity (ɳ) of pure solvent N,N-dimethylformamide (DMF) and solutions of pyrazolo quinazoline derivatives in DMF were taken at different concentration range and at different temperatures by using Antone paar. From these experimental data, some acoustical parameters such as adiabatic compressibility (κs), intermolecular free length (Lf), solvation number (Sn), apparent molar compressibility (fk), apparent molar volume (fv), internal pressure (π) etc., have been determined and correlated with the concentration (C).With concentration and temperatures, Linear or non-linear increases or decreases of acoustical parameters shows the existence of strong molecular interactions between solute and solvent. The results are interpreted in terms of solute-solute and solute-solvent interactions to understand the behavior of synthesized compounds in solutions.
Physical description
  • Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 360005 (Gujarat), India
  • Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 360005 (Gujarat), India
  • Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 360005 (Gujarat), India
  • [1] Dangi, R., Hussain, N., Joshi, A., Pemawat, G., and Talesara, G., Design, facile synthesis and biological evaluation containing pyrazolothiazolyl, triazinone and their ethoxyphthalimide derivatives, Indian Journal of Chemistry, 50 (2011) 1165.
  • [2] Bedi, P. M. S., Kumar, V., Mahajan, M. P., Synthesis and biological activity of novel antibacterial quinazolines, Bioorganic and Medicinal. Chemistry Leters., 14 (2004) 5211.
  • [3] Khalil, A. M., Berghot, M. A., Gouda, M. A., Synthesis and antibacterial activity of some new thiazole and thiophene derivatives, European Journal of Medical Chemistry, 44 (2009) 4434.
  • [4] Sharma, P., Rane, N., Gurram, V. K., Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents, Bioorganic and Medicinal. Chemistry Leters, 14 (2004) 4185.
  • [5] Elkholy, Y. M., Morsy, M. A., Facile synthesis of 5,6,7,8-Tetrahydropyrimido[4,5-b]-quinoline Derivatives, Molecules, 11 (2006) 890-893.
  • [6] Ibrahim, S. S., A. M. Abdel-Halim, Y. Gabr, S. El-Edfawy and R. M. Abdel-Rahaman, “Synthesis and biological evaluation of some new fused quinazoline derivatives,” J. Chem. Res.(S), 154-155 (1997)
  • [7] Pattanaik, J. M., Pattanaik, M., Bhatta, D., Synthesis and fungicidal activity of 3-quinazolinones, Indian Journal of Pharmaceutical Sciences, 53 (1991) 229.
  • [8] Prakash, O., Kumar, R., Parkash, V., Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones, European Journal of Medical Chemistry, 43 (2008) 435.
  • [9] Ryu, C., Kim, Y. H., Im, H. A., Kim, J. Y., Yoon, J. H., Kim, A., Synthesis and antifungal activity of 6,7-bis(arylthio)-quinazoline-5,8-diones and furo[2,3-f] quinazolin-5-ols, Bioorganic and Medicinal. Chemistry Leters, 22 (2012) 500.
  • [10] Shivananda, M. K., B. H. Shivarama, Antifungal activity studies of some quinazoline derivatives, Journal of Chemical and Pharmaceutical Research, 3 (2011) 83
  • [11] Ali, M. A., Shaharyar, M., Siddiqui, A. A., Synthesis, strucyural activity relationship and anti-tubercular activity of novel pyrazoline derivatives, European Journal of Medical Chemistry, 42 (2007) 268
  • [12] Zhang, Y., Huang, Y., Xiang, H., Wang, P., Hu, D., Xue, W., Song, B., Yang, S., Synthesis and anticancer activities of 4-(4-substituted piperazin)-5,6,7-trialkoxy quinazoline derivatives, European Journal of Medical Chemistry, 78 (2014) 23.
  • [13] Amin, K. M., Kamel, M. M., Anwar, M. M., Khedr, M., Syam, Y. M., Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1’-cyclohexan]-4(1H)-one derivatives as anti-inflammatory and analgesic agents European Journal of Medical Chemistry, 45 (2010) 2117.
  • [14] Kumar, P., Chandak, N., P. Kaushik, C. Sharma, D. Kaushik, K. R. Aneja, P. K. Sharma, Synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory – antibacterial agents, Medicinal Chemistry Research, 21 (2012), 3396-3405.
  • [15] Vasantharani, P., Pandiyan, V., Kannappan, A. N., Ultrasonic velocity, viscosity, density and excess properties of ternary mixture of N-methylcyclohexylamine+benzene+1-propanol, Asian Journal of Applied Sciences, 2 (2009) 169.
  • [16] Lunelli, B., Francesconi, R., Comeli, F., Thermodynamic study of the binary mixture trichloromethane-1,2-epoxy butane, Journal Chemical Society Faraday Trans, 93 (1997) 2527.
  • [17] Andrus, A., Partridge, B., Heck, J., Christensen, B., The synthesis of N-(tetrazol-5-yl)azetidin-2-ones, Tetrahedron Letters, 25 (1984) 911.
  • [18] Klich M., Teutsch G., Synthesis de N-(tetrazol-5-yl) azetidien-2-ones, Tetrahedron Letters, 25 (1984) 3849.
  • [19] Krishna, V., Sastry, S., Dielectric and thermodynamic studies on the hydrogen bonded binary system of isopropyl alcohol and aniline, Journal of Solution Chemistry, 39 (2010) 1377
  • [20] Mohan, T. M., Sastry. S. S., Murthy, V. R. K., Thermodynamic, dielectric and conformational studies on hydrogen bonded binary mixtures of propen-1-ol with methyl benzoate and ethyl benzoate, Journal of Solution Chemistry, 40 (2011) 131.
  • [21] Riddick, J. A., Bunger, W. B., Sakano, T., Organic solvents-physical properties and methods of purification, techniques of chemistry, New York, (1986).
  • [22] Baluja, S., Nandha, K., Determination of dissociation constant of some quinazoline derivatives at different temperatures in DMF-water medium, Journal of Molecular Liquids, 201 (2015) 90.
  • [23] Baluja, S., Inamdar, P., Soni, M., Acoustical studies of Schiff bases in 1, 4-dioxane and dimethylformamide at 308.15 K, Acta Physica Chimica Sinica, 20 (2004) 1104.
  • [24] Hasan, M., Hiray, A. P., Kadam, U. B., Shirude, D. F., Kurhe, K. J., Sawant, A. B., Journal of Solution Chemistry, 40 (2011) 415.
  • [25] Sastry, G. L., Sastry, V. K. S,. Krishnamurty, B., Ultrasonic parameters in mixed salt solutions, Indian Journal of Pure and Applied Physics, 6 (1968) 637.
  • [26] Suryanarayana, C. V., Kuppuswamy, J., Role of internal pressure in the chemistry of electrolyte solutions, J. Acoustical Society, 9 (1981) 4.
  • [27] Palani, R., Jayachitra, K., Ultrasonic study of ternary electrolytic mixtures at 303, 308 and 313 K, Indian Journal of Pure and Applied Physics, 46 (2008) 251-254.
  • [28] R. Gopal, M. A. Siddiqi, A study of ion-solvent interaction of some tetraalkylammonium and common ions in N-methylacetamide from apparent molal volume dara, Journal of Physical Chemistry, 73 (1969) 3390-3394.
  • [29] N. Saha, B. Das, D. K. Hazra, Viscosities and excess molar volumes for acetonitrile + methanol at 298.15, 308.15, and 318.15 K, Journal of Chemical Engineering Data, 40 (1995) 1264-1266
  • [30] C. H. Bachem, The compressibility of electrolytic solution, Zeitschrift Physik, 101 (1936) 541-577
  • [31] D. Das, B. Das, D. K. Hazra, Ultrasonic velocities and isentropic compressibilities of some symmetrical tetraalkylammonium salts in N, N-dimethylacetamide at 298.15 K, Journal of Molecular Liquids, 111 (2004) 15-18.
  • [32] Bahadur, N. Deenadayalu, Apparent molar volume and isentropic compressibility for the binary systems {methyltrioctylammonium Bis (trifluoromethylsulfonyl)imide + methyl acetate or methanol} and (methanol + methyl acetate) at T = 298.15, 303.15 and 313.15 K and atmospheric pressure, Journal of Solution Chemistry, 40 (2011) 1528-1543.
  • [33] Z. Yan, J. Wang, H. Zheng, D. Liu, Journal of Solution Chemistry, 27 (1998) 473-483.
  • [34] V. Singh, P. K. Chhotaray, P. K. Banipal, T. S. Banipal, R. L. Gardas, Volumetric properties of amino acids in aqueous solutions of ammonium based protic ionic liquids, Fluid Phase Equilibiria, 385 (2015) 258-274.
  • [35] P. S. Nikam, H. R. Ansari, M. Hasan, Ultrasonic velocity studies of dextrose and sucrose in water and in aqueous ammonium chloride at different temperatures, Journal of Pure and Applied Ultrasonics, 20 (1998) 75-78.
  • [36] D. Papamatthaiakis, F. Aroni, V. Havredaki, Isentropic compressibilities of (amide + water) mixtures: a comparative study, Journal of Chemical Thermodynamics, 40 (2008) 107-118
  • [37] Pal, A. Kumar, Excess molar volumes and kinematic viscosities for binary mixtures of dipropylene glycol lmonobutyl ether and dipropylene glycol tert-butyl ether with 2-pyrrolidinone, N-methyl-2-pyrrolidinone, N,N dimethyl formamide and N,N-dimethyl acetamide at 298.15 K, Journal of Chemical Engineering Data., 50 (2005) 856-862.
  • [38] V. K. Syal, B. S. Patial, S. Chauhan, Ultrasonic velocity, viscosity and density studies in binary mixtures of dimethyl formamide and ethyl methyl ketone at different temperatures, Indian Journal of Pure and Applied Physics, 37 (1999) 366-370.
  • [39] S. Baluja, A. Shah, Acoustical studies of some derivatives of 4-amino antipyrene in 1,4-dioxane and di methyl formamide at 318.15 K, Fluid Phase Equilibria, 215 (2004) 55-59.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.