Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 57 | 100-118

Article title

Anti-corrosion and adsorption properties of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol: electrochemical and computational chemistry investigation

Content

Title variants

Languages of publication

EN

Abstracts

EN
Because conventional inhibitors are nonbiodegradable and harmful, the development of eco-friendly corrosion inhibitors is gaining popularity. The anti-corrosive efficacy of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol on carbon steel in an chloride solution was evaluated in this study using a variety of approaches such as electrochemical measurements and computational studies. The results showed that increasing the concentration of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol from 0.1 to 3.0 g/L enhanced the inhibition efficiency (IE%) to 90.18-91.71 %. The high ΔE(eV) value of 0.239 and the interaction and binding energies of − 995.45 and 995.45 for 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol molecules onto Fe (110) substrate were further supported by quantum chemical analytics, which also supported the empirical results. The results show that 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol has a bright future as an effective and environmentally safe inhibitor for preventing carbon steel from corroding in corrosive media.

Year

Volume

57

Pages

100-118

Physical description

Contributors

  • Department of Physics, Cross River State College of Education, Akamkpa, Cross River State, Nigeria
  • Department of Physics, Cross River State College of Education, Akamkpa, Cross River State, Nigeria
  • Materials and Electrochemistry Research Group, Department of Chemistry, University of Cross River State. P. M. B. 1123, Calabar, Nigeria
  • Materials Chemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria

References

  • [1] N. Arrousse, R. Salim, A. Abdellaoui, F. El Hajjaji, B. Hammouti, El Houssine M, W. Agerico Diño, M. Taleb, Synthesis, characterization, and evaluation of xanthene derivative as highly effective, nontoxic corrosion inhibitor for mild steel immersed in 1 M HCl solution. J. Taiwan Inst. Chem. Eng. 2021; 120: 344–359
  • [2] M. G. Mohamed, A. Mahdi, R. J. Obaid, M. A. Hegazi, S. W. Kuo, K. I. Aly, Synthesis and characterization of polybenzoxazine/clay hybrid nanocomposites for UV light shielding and anti-corrosion coatings on mild steel, J. Poly. Res. 2021; 28: 264-276
  • [3] M. G. Mohamed, S. W. Kuo, A. Mahdi, I. M. Ghayd, K. I. Aly, Bisbenzylidene cyclopentanone and cyclohexanone-functionalized polybenzoxazine nanocomposites: Synthesis, characterization, and use for corrosion protection on mild steel. Mater. Today Comm. 2020; 25: 101418
  • [4] K. I. Aly, A. Mahdi, M. A. Hegazi, N. S. Al-Muaikel, S. W. Kuo, M. G. Mohamed, Corrosion resistance of mild steel coated with Phthalimide-Functionalized polybenzoxazines. Coating. 2020 a, 10 (11), 1114
  • [5] K. I. Aly, M. G. Mohamed, O. Younis, M. H. Mahross, M. A. Hakim, M. M. Sayed, Salicylaldehyde azine-functionalized polybenzoxazine: synthesis, characterization, and its nanocomposites as coatings for inhibiting the mild steel corrosion. Prog. Org. Coat. 2020b; 138: 105385
  • [6] K. I. Aly, O. Younis, M. H. Mahross,O. Tsutsumi, M. G. Mohamed, M. M. Sayed, Novel conducting polymeric nanocomposites embedded with nanoclay: synthesis, photoluminescence, and corrosion protection performance. Poly. J. 2019; 51: 77-90
  • [7] M. Zunita, Y. J. Kevin, Ionic liquids as corrosion inhibitor: From research and development to commercialization. Results in Eng. 15 (2022) 100562
  • [8] A. A. Ayoola, R. Babalola, B. M. Durodola, E. E. Alagbe, O. Agboola, E. O. Adegbile, Corrosion inhibition of A36 mild steel in 0.5 M acid medium using waste citrus limonum peels. Results in Eng. 15(2022) 100490
  • [9] M. A. Quraishi, D. S. Chauhan, Drugs as environmentally sustainable corrosion inhibitors: Sustainable corrosion inhibitors II: Synthesis, design, and practical applications ACS symposium series; American Chemical Society: Washington, DC, 2021
  • [10] I. B. Obot, E. E. Ebenso, M M. Kabanda, Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: Experimental and Theoretical Investigation. J. Environ. Chem. Eng. 2013, 1 (3), 431–439
  • [11] I. B. Obot, I. B. Onyeachu, S. A. Umoren, S. A. Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines. Corros. Sci. 159 (2019) 108140
  • [12] I. B. Onyeachu, I. B. Obot, A. Y. Adesina, Green corrosion inhibitor for oilfield application Ii: The time–evolution effect on the sweet corrosion of API X60 steel in synthetic brine and the inhibition performance of 2-(2-Pyridyl) benzimidazole under turbulent hydrodynamics. Corros. Sci. 2020, (2020), 108589
  • [13] Hossain, N., Asaduzzaman Chowdhury, M., & Kchaou, M. (2020). An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. Journal of Adhesion Science and Technology, 35(7), 673–690. https://doi.org/10.1080/01694243.2020.1816793
  • [14] M. A. Quraishi, D. S. Chauhan, V. S. Saji, Heterocyclic organic corrosion inhibitors: principles and applications; Elsevier Inc: Amsterdam, 2020.
  • [15] N. Y. Diki, N. H. Coulibaly, O. Kambire, A. Trokoourey, Experimental and theoretical investigation on copper corrosion inhibition by cefixime drug in 1 M HNO3 solution. J. Mater. Sci. Chem. Eng. 9 (2021) 11–28
  • [16] N. Y. Diki, N. H. Coulibaly, J. N. Yao, A. Trokourey, Thermodynamic and DFT studies on the behavior of cefadroxil drug as effective corrosion inhibitor of copper in one molar nitric acid medium. J. Mater. Env. Sci. 2019; 10 (10): 926–938.
  • [17] A. Ouedraogo, N. Y. Diki, B. W. Irie, N. H. Coulibaly, A. Trokourey, Copper corrosion inhibition by cefpodoxime drug in 1M Nitric Acid: Experimental and DFT approaches. Int. J. Innov. Appl. Stud. 2018; 24 (3): 1299–1311
  • [18] Y. S. Brou, N. H. Coulibaly, N. Y. Diki, J. Creus, A. Trokourey, Electrochemical study of the synergistic effect of two copper corrosion inhibitors, nicotinic acid and nicotina amide in two different media. Open J. Phys. Chem. 2019, 9: 193–203
  • [19] M. A. Tigori, P. M. Niamien, A. Trokourey, Thiamine hydrochloride as copper
  • corrosion inhibitor in 1 M HNO3. J. Prog. Chem. 2016, 4 (1)166–178.
  • [20] B. M. Prasanna, B. M. Praveen, N. Hebbar, M. K. Pavithra, T. S. Manjunatha, R. S. Malladi, Theoretical and Experimental approach of inhibition effect by sulfamethoxazole on mild steel corrosion in 1 M HCl. Surf. Inter. Analysis, 2018; 50 (8): 779–789
  • [21] F. E. Abeng, V.C. Anadebe, V.D. Idim, M.M. Edim. Anti-corrosion behaviour of expired tobramycin drug on carbon steel in acidic medium, S. Afr. J. Chem. 2020; 73: 125–130
  • [22] N. H. Coulibaly, Y. S. Brou, S. Akpa, C. Juan, A. Trokourey. Nicotinamide inhibition properties for copper corrosion in 3.5 % NaCl solution: Experimental and theoretical Investigation. J. Mate. Sci. Chem. Eng. 2018; 6: 100–121
  • [23] A. Ouedrogo, N. Y. Diki, K. V. Bohoussou, D. Soro, A. Trokourey. Copper corrosion inhibition by cefuroxime drug in 1 M nitric acid. Chem. Sci. Rev. Lett. 2018; 7 (26) 427–437
  • [24] V.C. Anadebe, O.D. Onukwuli, M. Omotioma, N.A. Okafor, Experimental, theoretical modeling and optimization of inhibition efficiency of pigeon pea leaf extract as anti-corrosion agent of mild steel in acid environment. Mater Chem. Phys. 2019; 233: 120-132
  • [25] T. Yan, S. Zhang, L. Feng, Y. Qiang, L. Lu, D. Fu, Y. Wen, J. Chen, W. Li, B. Tan, Investigation of imidazole derivatives as corrosion inhibitors of copper in sulfuric acid: combination of experimental and theoretical researches, J. Taiwan Inst. Chem. Eng. 2020; 106: 118–129
  • [26] V.C. Anadebe, C.S. Okafor, O.D. Onukwuli, Electrochemical, molecular dynamics, adsorption studies and anti-corrosion activities of moringa leaf biomolecules on carbon steel surface in alkaline and acid environment. Chemical Data Collection. 2020; 28: 100437
  • [27] S, Attabi, M. Mokhtari, Y. Taibi, I. Abdel-Rahman, B. Hafez, H. Elmsellem, Electrochemical and Tribological Behavior of Surface-Treated Titanium Alloy Ti-6Al-4V. Journal of Bio-and Tribo-Corrosion, 5 (2019), 2
  • [28] T. E. Gber, H. Louis, A. E. Owen, B. E. Etinwa, I. Benjamin, F. C. Asogwa, E. A. Eno, E. A. Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS2 for NH3 gas detection. RSC Advances, 2022, 12 (40) 25992-26010
  • [29] A. Liu, W. Guan, X. Zhao, X. Ren, X. Liang, L. Gao, T. Ma, Investigation on the interfacial behavior of polyorganic inhibitors on a metal surface by DFT study and MD simulation. Appl. Surf. Sci. 541 (2021) 148570
  • [30] A. Kokalj, On the alleged importance of the molecular electron-donating ability and the HOMO–LUMO gap in corrosion inhibition studies. Corros. Sci. 180 (2021) 109016
  • [31] S. A. Adalikwu, H. Louis, H. O. Edet, I. Benjamin, T. C. Egemonye, E. A. Eno, A.S. Adeyinka, Detection of hydrogen fluoride (HF) gas by Mg12O11-X (X= S, P, N, and B) nanosurfaces. Chemical Physics Impact, 5 (2022) 100129.
  • [32] A. I. Ikeuba, A. U. Agobi, L. Hitler, B. J. Omang, F. C. Asogwa, I. Benjamin, M. C. Udoinyang, M. C. Green Approach towards corrosion inhibition of mild steel during acid pickling using chlorpheniramine: Experimental and DFT Study. Chemistry Africa, 2022, 1-15
  • [33] H. Louis, M. Patrick, I. O. Amodu, I. Benjamin, I. J. Ikot, G. E. Iniama, A. S. Adeyinka, Sensor behavior of transition-metals (X = Ag, Au, Pd, and Pt) doped Zn11-X- O12 nanostructured materials for the detection of serotonin. Materials Today Communications, 34 (2023) 105048
  • [34] D. Daouda, T. Douadi, D. Ghobrini, N. Lahouel,H. Hamani, Investigation of some phenolic-type antioxidants compounds extracted from biodiesel as green natural corrosion inhibitors;DFT and molecular dynamic simulation, comparative study. In AIP Conference Proceedings, 2019, Vol. 2190, No.1, page 020098
  • [35] E. A. Eno, C. R. Cheng, H. Louis, T E. Gber, W. Emori, I. A. T. Ita, A. S. Adeyinka, Investigation on the molecular, electronic and spectroscopic properties of rosmarinic acid: an intuition from an experimental and computational perspective. Journal of Biomolecular Structure and Dynamics, 2022, 1-15
  • [36] C. G. Apebende, H. Louis, A. E. Owen, I. Benjamin, I. O. Amodu, T. E. Gber, F. C. Asogwa, Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation. Zeitschrift für Physikalische Chemie, 2022, 236 (11-12), 1515-1546
  • [37] H. Louis, J. F. Eze, D. N. Adanna, H. O. Edet, T. O. Unimuke, E. A. Eno, V. N. Osabor, A. S. Adeyinka. Computational study of the interaction of c12p12 and c12n12 nanocages with alendronate drug molecule. Chemistry Select 8, (1) (2023) e202203607
  • [38] A. Liu, W. Guan, X. Zhao, X. Ren, X. Liang, L. Gao, T. Ma, Investigation on the interfacial behavior of polyorganic inhibitors on a metal surface by DFT study and MD simulation. Appl. Surf. Sci. 541 (2021) 148570
  • [39] M, Abdallah, K. A. Soliman, M. Alshareef, A. S. Al-Gorair, H. Hawsawi, H. M. Altass, M. S. Motawea, Investigation of the anticorrosion and adsorption properties of two polymer compounds on the corrosion of SABIC iron in 1 M HCl solution by practical and computational approaches. RSC Advances, 2022, 12 (31), 20122-20137
  • [40] F.O. Edoziuno, A.A. Adediran, B.U. Odoni, C.C. Nwaeju, O.S. Adesina, M. Oki, Influence of wormin mebendazole on the corrosion of mild steel in 1.0 M sulfuric acid. Results in Eng. 9 (2021) 100192
  • [41] H. Lgaz, S. K. Saha, A. Chaouiki, K. S. Bhat, R. Salghi, Shubhalaxmi, P. Banerjee, I. H. Ali, M. I. Khan, I. Chung, Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies. Const. Build. Mater. 233 (2020), 117320.
  • [42] S. Nikpour, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, M. Mahdavian, Eriobotrya japonica Lindl leaves extract application for effective corrosion mitigation of mild steel in HCl solution: experimental and computational studies. Const. Build. Mater. 220 (2019) 161-176
  • [43] F. E. Abeng, M. E. Ikpi, O. A. Ushie, V. C. Anadebe, B. E. Nyong, M. E. Obeten, N. A. Okafor, V. I. Chukwuike, P. Y. Nkom. Insight into corrosion inhibition mechanism of carbon steel in 2 M HCl electrolyte by eco-friendly based pharmaceutical drugs. Chem. Data Collection 2021; 34: 100722
  • [44] V. C. Anadebe, O. D. Onukwuli, F. E. Abeng, N. A. Okafor, J.O. Ezeugo, C. C. Okoye, Electrochemical-kinetics, MD-simulation and multi-input single-output (MISO) Modeling using adaptive neuro-fuzzy interference system (ANFIS) prediction for dexamethasone drug as eco-friendly corrosion inhibitor for mild steel in 2 M HCl electrolyte. J. Taiwan Inst. Chem. Eng. 2020; 115: 251–265
  • [45] A. Jasim, K. H. Rashid, K. F. AL-Azawi, A. A. Khadom, Synthesis of a novel pyrazole heterocyclic derivative as corrosion inhibitor for low-carbon steel in 1M HCl: Characterization, gravimetrical, electrochemical, mathematical, and quantum chemical investigations, Result in Eng. 15 (2022) 100573
  • [46] A. A. Khadom, A. A. Mahmmod, Quantum chemical and mathematical statistical calculations of phenyltetrazole derivatives as corrosion inhibitors for mild steel in acidic solution: A theoretical approach, Result in Eng. 16 (2022) 100741
  • [47] O. Oyewole, T.S. Abayomi, T. A. Oreofe, T. A. Oshin, Anti-corrosion using rice straw extract for mild steel in 1.5 M H2SO4 solution, Result in Eng. 16 (2022) 100684
  • [48] O. Sanni, J. Ren, T. Jen, Agro-industrial wastes as corrosion inhibitor for 2024-T3 aluminum alloy in hydrochloric acid medium. Result in Eng. 16 (2022) 100676
  • [49] T. Sithuba, N. D. Masia, J. Moema, L. C. Murulana, G. Masuku, I. Bahadur, M. M. Kabanda, Corrosion inhibitory potential of selected flavonoid derivatives: Electrochemical, molecular Zn surface interactions and quantum chemical approaches. Result in Eng. 16 (2022) 100694
  • [50] A.A. Ayoola, B.M. Durodola, R. Babalola, O.D. Adeniyi, C.E. Ilobinso, Corrosion inhibitive effects of calcium-modified zinc phosphate coating on A36 mild steel. Result in Eng. 17 (2023) 100880
  • [51] M. Beniken, R. Salim, E. Ech-chihbi, M. Sfaira, B. Hammouti, M. E. Touhami, M. A. Mohsin, M. Hammouti, M. Taleb. Adsorption behavior and corrosion inhibition mechanism of a polyacrylamide on C-steel in 0.5 M H2SO4. Electrochemical assessment and molecular dynamic simulations. J. Mol. Liq. 2021. 118022
  • [52] V. Kalia, P. Kumar, S. Kumar, M. Goyel, P. Pahuja, G. Jhaa, S. Lata, H. Dahiya, A. Kumari, C. Verma, Sythesis, characterization and corrosion inhibition potential of Oxadiazole derivatives for mild steel in HCl: Electrochemical and Computational studies. J. Mol. Liq. 2021; 118021
  • [53] H. Elmsellem, Y. El Ouadi, M. Mokhtari, H. Bendaif, H. Steli, A. Aouniti, A. M. Almehdi, I. Abdel-Rahman, HH. S. Kusuma, B. Hammouti. A natural antioxidant and an environmentally friendly inhibitor of mild steel corrosion: a commercial oil of basil (Ocimum basilicum l.). J. Chem. Tech. Metall. 4 (2019) 742-749
  • [54] F. Yousfi, H. Elmsellem, G. Fekkar, M. Aiboudi, M. Ramdani, І. Abdеl-Rahman, B. Hammouti, L. Bouyazza, Eco-friendly Chamaerops humilis L. fruit extract corrosion inhibitor for mild steel in 1 M HCl. Int. J. Corros. Scale Inhibition. 9 (2020) 446-459
  • [55] B. Hafez, M. Mokhtarі, H. Elmsellem, H. Steli, Environmentally friendly inhibitor of the corrosion of mild steel: Commercial oil of Eucalyptus. Int. J. Corros. Scale Inhibition 8 (2019) 573-585
  • [56] H. Elmsellem, T. Harit, A. Aouniti, F. Malek, A. Riahi, A. Chetouani, B. Hammouti, Adsorption properties and inhibition of mild steel corrosion in 1 M HCl solution by some bipyrazolic derivatives: experimental and theoretical investigations, Protection of Metals and Physical Chemistry of Surfaces 51 (2015) 873-884
  • [57] K. Chkirate, K. Azgaou, H. Elmsellem, et al., Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl) methyl] benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. J Mol. Liq. 321 (2021) 114750
  • [58] M. Yadav, R. R. Sinha, T. K. Sarkar, I. Bahadur, E. E. Ebenso, Application of new isonicotinamides as a corrosion inhibitor on mild steel in acidic medium: Electrochemical, SEM, EDX, AFM and DFT investigations. J. Mol. Liq. 212 (2015) 686–698
  • [59] H. Elmsellem, H. Nacer, F. Halaimia, A. Aouniti, I. Lakehal, A. Chetouani, S. S. Al-Deyab, R. Touzani, B. Hammouti, Anti-corrosive Properties and Quantum Chemical Study of (E)- 4-Methoxy-N-(Methoxybenzylidene) Aniline and (E)-N-(4- Methoxybenzylidene)-4-Nitroaniline Coating on Mild Steel in Molar Hydrochloric. Int. J. Electrochem. Sci. 9 (2014) 5328
  • [60] K. Azgaou, M. Damej, S. El Hajjaji, N. Kheira Sebbar, H. Elmsellem, B. El Ibrahimi, M. Benmessaoud, Synthesis and characterization of N-(2-aminophenyl)-2-(5-methyl-1H-pyrazol-3-yl) acetamide (AMPA) and its use as a corrosion inhibitor for C38 steel in 1 M HCl. Experimental and theoretical study. J. Mol. Str. 1266 (2022) 133451
  • [61] L. Toukal, D. Belfennache, M. Foudia, R. Yekhlef, F. Benghanem, B. Hafez, H. Elmsellem, І. Abdеl-Rahman, Inhibitory power of N,N´-(1,4-phenylene)bis(1 (4nitrophenyl) methanimine) and the effect of the addition of potassium iodide on the corrosion inhibition of XC70 steel in HCl medium: Theoretical and experimental studies. Int. J. Corros. Scale Inhibition. 11 (2022) 438-464
  • [62] B. Tan, S. Zhang, H. Liu, Y. Guo, Y. Qiang,W. Li, L. Guo, C. Xu, S. Chen, Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1(1,3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: combination of experimental and theoretical researches. J. Coll. Inter. Sci. (2019) 538: 519–529
  • [63] I. Danaee, S. R. Kumar, M. R. Avei, M. Vijayan, Electrochemical and Quantum chemical Studies on corrosion inhibition performance of 2, 2-(2-hydroxyethylimino)bis[N-(alphaalpha-dimethylphenethyl)-N-methylacetamide] on mild steel corrosion in 1 M HCl solution. Mater. Res. 23 (2020) e20180610
  • [64] M. Abdallah, E. A. M. Gad, M. Sobhi, J. H. Fahemi, M. M. Alfakeer, Performance of Tramadol drug as safe inhibitor for Aluminum corrosion in 1.0 M HCl solution and understanding mechanism of inhibition using DFT. Egypt. J. Petr. 28 (2019) 173–181
  • [65] D. Douche, H. Elmsellem, E. H. Anouar, et al., Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. J. Mol. Liq. 308 (2020) 113042
  • [66] L. Toukal, M. Foudia, D. Haffar, N. Aliouane, M. Al-Noaimi, Y. Bellal, H. Elmsellem, І. Abdеl-Rahman, Monte Carlo simulation and electrochemical performance corrosion inhibition whid benzimidazole derivative for XC48 steel in 0.5 M H2SO4 and 1.0 M HCl solutions. J. Indian Chem. Soc. (2022) 100634
  • [67] N. I. N. Haris, S. Sobri, Y. A. Yusof, N. K. Kassim, An overview of molecular dynamic simulation for corrosion inhibition of ferrous metals. Metals, (2020) 11(1), 46
  • [68] X. Liu, P. C. Okafor, X. Pan, D. I. Njoku, K. J. Uwakwe, Y. Zheng, Corrosion inhibition and adsorption properties of cerium-amino acid complexes on mild steel in acidic media: experimental and DFT studies. J. Adhesion. Sci. Tech. (2020) 1568-5616

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3b20bc48-f0c6-4716-9f6a-58f1037c5f3d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.