Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
System messages
  • Session was invalidated!
2012 | 15 | 4 | 129-138

Article title

Wykorzystanie komórek nabłonkowych z jamy ustnej w monitoringu biologicznym ludzi

Content

Title variants

EN
The use of buccal cells in human biological monitoring

Languages of publication

PL

Abstracts

PL
Jedną z podstawowych metod określania stopnia zagrożenia
środowiskowego ludzi jest oznaczenie substancji
szkodliwych w poszczególnych elementach środowiska
(powietrze, woda, gleba, żywność). W odróżnieniu od
monitoringu środowiska – monitoring biologiczny ludzi
(HBM) umożliwia oszacowanie wielkości dawki wchłoniętej,
ogólnej bądź zlokalizowanej w określonym narządzie.
HBM pozwala na ocenę narażenia na substancje,
które wchłaniane są do organizmu wszystkimi drogami
i z różnych nośników zanieczyszczeń. Polega na pomiarze
wskaźników, tzw. biomarkerów w płynach ustrojowych
(krew, mocz, ślina, itd.) lub w tkankach i narządach. Biomarkery
dzielimy na markery ekspozycji, skutków oraz
wrażliwości.
Szczególnie przydatną metodą jest oznaczanie adduktów,
czyli związków substancji rakotwórczych (lub ich
metabolitów) z białkami lub DNA, będących markerem
narażenia. Za biomarkery skutków biologicznych uznawane
są różne zmiany cytogenetyczne, w tym także obecne
w komórkach mikrojądra. Są to struktury pozajądrowe
zawierające fragmenty chromatyny (powstałe w skutek
pęknięć DNA) lub całe chromosomy (uszkodzenia wrzeciona
podziałowego).
Większość badań poziomu adduktów DNA i mikrojąder
była dotychczas prowadzona w komórkach limfocytów
krwi obwodowej. W chwili obecnej prowadzenie badań
z wykorzystaniem krwi, zwłaszcza u dzieci jest obostrzone
względami bioetycznymi, dlatego zainteresowaniem naukowców
zaczęły się cieszyć testy wykorzystujące komórki
nabłonkowe z jamy ustnej.
Komórki nabłonkowe są głównym budulcem tkanki
nabłonkowej, a także stanowią około 60% wszystkich
komórek organizmu człowieka. Tkanka nabłonkowa pełni
przede wszystkim funkcję okrywającą i wyściełającą
zewnętrzne oraz wewnętrzne powierzchnie organizmu.
Nabłonek w różnych częściach organizmu człowieka uległ
wysokiej specjalizacji, co związane jest z jego budową
i pełnioną funkcją. Jamę ustną człowieka jest pokrywa
nabłonek wielowarstwowy płaski, który zbudowany jest
z komórek określanych jako keratynocyty. Komórki nabłonkowe
jamy ustnej mogą podlegać dwóm drogom różnicowania
– w kierunku nabłonków rogowaciejących i nierogowaciejących.
W niniejszej pracy w oparciu o nasze dotychczasowe
doświadczenia oraz dostępną literaturę przedstawiono procedury
badawcze zawierające opis poboru komórek
nabłonkowych z jamy ustnej oraz przygotowanie go w ten
sposób, aby mógł zostać wykorzystany zarówno do analizy
adduktów DNA, jak i testu mikrojądrowego.
EN
One of the basic methods for determining the degree
of environmental risk posed to humans is identification
of harmful substances in various environmental elements
(air, water, soil, food). In contrast to environmental monitoring
human biological monitoring (HBM) enables the
estimation of an absorbed dose, general or localized in
a specific organ. HBM enables the assessment of exposure
to substances which are absorbed by the body via different
exposure pathways and with different contaminant carriers.
It is based on the measurement of indicators, the so-called
biomarkers, in body fluids (blood, urine, saliva, etc.) or in of exposure, effects and susceptibility.
A particularly useful method is determination of
adducts, i.e. carcinogenic compounds (or their metabolites)
with proteins or DNA, which are markers of exposure. Biomarkers
of biological effects are different cytogenetic
changes, including micronuclei. These are extranuclear
structures containing fragments of chromatin (arising as
a result of DNA breaks) or whole chromosomes (damage
to the spindle apparatus during mitosis).
Up to now most studies on the DNA adduct levels and
micronuclei have been conducted in peripheral lymphocytes.
At present, studies using blood, especially in children
to restricted to ethical aspects, and therefore tests using
epithelial cells from the oral cavity have become more
popular.
Epithelial cells are the main building material of an
epithelial tissue which makes up about 60% of all cells of
the human body. The main function of the epithelial tissue
is covering and lining of the outer and inner surfaces of
the body. Epithelium underwent high specialisation in various
parts of the human body, which is associated with its
structure and function. Human oral cavity is covered by
stratified squamous epithelium, which is comprised of cells
called keratinocytes. Oral epithelial cells may differentiate
in two directions: towards keratinized or nonkeratinized
oral epithelia.
In this study, based on our past experience and the available
literature, research procedures for the collection of
oral epithelial cells and their proper preparation for using
them both for the analysis of DNA adducts and micronucleus
assay are presented.

Contributors

  • Instytut Ekologii Terenów Uprzemysłowionych w Katowicach
  • Danuta Mielżyńska-Švach

References

  • 1. Biomarkers and Risk Assessment: Concepts and Principles: Environmental Health Criteria 155. World Health Organization, Geneva 1993.
  • 2. Piotrowski J.K.: Biomarkery (w:) Seńczuk W. (red.): Toksykologia współczesna. Wydawnictwo PZWL, Warszawa 2006: 717-722.
  • 3. Gonsebatt M.E., del Valle M., Fourtoul T. i wsp.: Micronucleus (MN) frequency in nasal respiratory epithelium from young adults living in urban areas with different levels of air pollution. Mutat. Res. 1997; 379: 198.
  • 4. Piasecka-Lis M.: Analiza częstości wystepowania mikrojąder w komórkach nabłonkowych w narządach płciowych kobiet. Ginekologia Praktyczna 2008; 1: 36-41.
  • 5. Esteban M., Castano A.: Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009; 35: 438-449.
  • 6. Knasmueller S., Holland N., Wultsch G. i wsp.: Use of nasal cells in micronucleus assays and other genotoxicity studies. Mutagenesis 2011; 26: 231-238.
  • 7. Rosin M.P.: The use of the micronucleus test on exfoliated cells to identify anti-clastogenic action in humans: a biological marker for the efficacy of chemopreventive agents. Mutat. Res. 1992; 267: 265-276.
  • 8. Squier C.A.: Biology of oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 2001; 29: 7-15.
  • 9. Kmieć Z.: Histologia i cytofizjologia zęba i jamy ustnej. Urban i Partner, Wrocław 2007: 114-126.
  • 10. Adams D.: Keratinization of the oral epithelium. Ann. R. Coll. Surg. Engl 1976; 58: 351-358.
  • 11. Rojas E., Valverde M., Sordo M. i wsp.: DNA damage in exfoliated buccal cells of smokers assessed by the single cell gel electrophoresis assay. Mutat. Res. 1996; 370: 115-120.
  • 12. Rupa D.S., Eastmond D.A.: Chromosomal alterations affecting the 1cen-1q12 region in buccal mucosal cells of betel quid chewers detected using multicolor fluorescence in situ hybridization. Carcinogenesis 1997; 18(12): 2347-2351.
  • 13. Hsu T.M., Zhang Y.J., Santella R.M.: Immunoperoxidase quantitation of 4-aminobiphenyl- and polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral and urothelial cells of smokers and nonsmokers. Cancer Epidemiol. Biomarkers Prev. 1997; 6: 193-199.
  • 14. Surrallés J., Autio K., Nylund L. i wsp.: Mocelular cytogenetic analysis of buccal cells and lymphocytes from benzene-exposed workers. Carcinogenesis 1997; 4: 817-823.
  • 15. Montero R., Serrano L., Dávila I. i wsp.: Metabolic Polymorphisms and the Micronucleus Frequency in Buccal Epithelium of Adolescents Living in an Urban Environment. Environ. Mol. Mutagen. 2003; 42: 216-222.
  • 16. Ergene S., Celik A., Cavas T. i wsp.: Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Göksu Delta: micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ. Int. 2007; 33: 877-885.
  • 17. Borthakur G., Butryee C., Stacewicz-Sapuntzakis M. i wsp.: Exfoliated buccal mucosa cells as a source of DNA study oxidative stress. Cancer Epidemiol. Biomarkers Prev. 2008; 17: 212-219.
  • 18. Westphalen G.H., Menezez L.M., Pra D. i wsp.: In vivo determination of genotoxicity induced by metals from orthodontic appliances using micronucleus and comet assay. Genetics Mol. Res. 2008; 7: 1259-1266.
  • 19. Thomas P., Holland N., Bolognesi C. i wsp.: Buccal micronucleus cytome assay. Nat. Protoc. 2009; 4: 825-837.
  • 20. Stone J.G., Jones N.J., McGregor A.D. i wsp.: Development of a human biomonitoring assay using buccal mucosa: comparison of smoking-related DNA adducts in mucosa versus biopsies. Cancer Res. 1995; 55: 1267-1270.
  • 21. Vaca C.E., Nilsson J.A, Fang J-L. i wsp.: Formation of DNA adducts in human buccal epithelial cells exposed to acetaldehyde and methylglyoxal in vitro. Chem. Biol. Interact. 1998; 108: 197-208.
  • 22. Santella R.M.: Immunological methods for detection of carcirogen- DNA damage in humans. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 733-739.
  • 23. Bessette E.E., Goodenough A.K., LangouĎt S. i wsp.: Screening for DNA adducts by data-dependent constant neutral loss - triple stage (MS3) mass spectrometry with a Linear quadrupole ion trap mass spectrometer. Anal. Chem. 2009; 81(2): 809-819.
  • 24. Zhang Y.J., Hsu T.M., Santella R.M.: Immunoperoxidase detection of polycyclic aromatic hydrocarbon-DNA adducts in oral mucosa cells of smokers and nonsmokers. Cancer Epidemiol. Biomarkers Prev. 1995; 4:133-138.
  • 25. Romano G., Sgambato A., Boninsegna A. i wsp.: Evaluation of polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral cells by an immunohistochemical assay. Cancer Epidemiol. Biomarkers Prev 1999; 8: 91-96.
  • 26. Motykiewicz G., Michalska J., Pendzich J i wsp.: A molecular epidemiology study in women from Upper Silesia, Poland. Toxicol. Lett. 1998; 96: 195-202,
  • 27. Suhas S., Ganapathy K.S., Gayatridevi I. i wsp.: Application of the micronucleus test to exfoliated epithelial cells from the oral cavity of beedi smokers, a high-risk group for oral cancer. Muatat. Res. 2004; 561: 15-21.
  • 28. Gabriel H.E., Crott J.W., Ghandour H. i wsp.: Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic gamage in the buccal mucosa of healthy adults. American Society for Nutrition 2006; 83: 835-841.
  • 29. El-Setouhy M., Loffredo C.A., Radwan G. i wsp.: Genotoxic effects of waterpipe smoking on the buccal mucosa cells. Mutat. Res. 2008; 655: 36-40.
  • 30. Haveric A., Haveric S., Ibrulj S.: Micronuclei frequencies in peripheral blood and buccal exfoliated cells of young smokers and non-smokers. Toxicology Mechanisms and Methods 2010; 20: 260-266.
  • 31. Chandirasekar R., Suresh K., Jayakumar R. i wsp.: XRCC1 gene variants and possible links with chromosome aberrations and micronucleus in active and passive smokers. Environ. Tox. Pharmacol. 2011; 32: 185-192.
  • 32. Nersesyan A., Muradyan R., Kundi M. i wsp.: Impact of smoking on the frequencies of micronuclei and other nuclear abnormalities in exfoliated oral cells: a comparative study with different cigarette type. Mutagenesis 2011; 26: 295-301.
  • 33. Karahalil B., Karakaya A.E., Burgaz S.: The micronucleus assay in exfoliated buccal cells: application to occupational exposure to polycyclic aromatic hydrocarbons. Mutat. Res. 1999; 442: 29-35.
  • 34. Lewińska D., Palus J., Stępnik M.: Micronucleus frequency in peripheral blood lymphocytes and buccal mucosa cells of cooper smelter workers, with special regard to arsenic exposure. Int. Arch. Occup. Environ. Health. 2007; 80: 371-380.
  • 35. Celik A., Kanik A.: Genotoxicity of occupational exposure to wood dust: micronucleus frequency and nuclear changes in exfoliated buccal mucosa cells. Environ. Mol. Mutagen. 2006; 47: 693-698.
  • 36. Celik A., Cavas T., Ergene-Gűzőkara S.: Cytogenetic biomonitoring in petrol station attendants: micronucleus test in exfoliated buccal cells. Mutagenesis 2003; 18: 417-421.
  • 37. Hallare A.V., Gervasio M.K.R., Gervasio P.L.G. i wsp.: Monitoring genotoxicity among gasoline attendants and traffic enforces in the City of Manila using the micronucleus assay with exfoliated epithelial cells. Environ. Monit. Assessment 2009; 156: 331-341.
  • 38. Cavalo D., Ursini C.L., Omodeo-Sale` E. i wsp.: Micronucleus induction and FISH analysis in buccal cells and lymphocytes of nurses administering antineoplastic drugs. Mutat. Res. 2007; 628: 11-18.
  • 39. Celik A., Diler S.B., Eke D.: Assessment of genetic damage in buccal epithelium cells of painters: micronucleus, nuclear changes, and repair index. DNA Cell Biol. 2010; 6: 277-284.
  • 40. Diler S.B., Celik A.: Cytogenetic biomonitoring of carpet fabric workers using micronucleus frequency, nuclear changes, and the calculation of risk assessment by repair index in exfoliated mucosa cells. DNA Cell Biol. 2011; 10: 821-827.
  • 41. Pastor S., Gutiérrez S., Creus A., i wsp.: Micronuclei in peripheral blood lymphocytes and buccal epithelial cells of Polish farmers exposed to pesticides. Mutat. Res. 2001; 495: 147-156.
  • 42. Martinez V., Creus A., Venegas W. i wsp.: Micronuclei assessment in buccal cells of people environmentally exposed to arsenic in northern Chile. Toxicol. Lett. 2005; 155: 319-327.
  • 43. Yadav A.S., Sharma M.K.: Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiation. Mutat. Res. 2008; 650: 175-180.
  • 44. Hintzsche H., Stopper H.: Micronucleus frequency in buccal mucosa cells of mobile phone users. Toxicol. Lett. 2010: 193: 124-130.
  • 45. Ribeiro D.A., Angelieri F.: Cytogenetic biomonitoring of oral mucosa from adults exposed to dental X-rays. Radiat. Med. 2008; 26: 325-330.
  • 46. Bloching M., Reich W., Schubert J. i wsp.: Micronucleus rate of buccal moucosa epithelial cells in relation to oral hygiene and dental factors. Oral Oncol. 2008; 44: 220-226.
  • 47. Ramirez A., Saldanha P.R.: Micronucleus investigation of alcoholic patients with oral carcinomas. Genet. Mol. Res. 2002; 1: 246-260.
  • 48. Belowska J., Frączek A., Rał M. i wsp.: Wstępne badania nad częstością występowania mikrojąder w komórkach nabłonka śluzowego jamy ustnej u osób chorych na nowotwory krtani. Przegląd lekarski 2004; 64: 248-250.
  • 49. Chatterjee S., Dhar S., Sengupta B. i wsp.: Cytogenetic monitoring in human oral cancers and other oral phatology: the micronucleus test in exfoliated buccal cells. Toxicol. Mechan. Met. 2009; 19: 427-433.
  • 50. Thomas P., Hecker J., Faunt J. i wsp.: Buccal micronucleus cytome biomarkers may be associated with Alzheimer’s disease. Mutagenesis 2007; 22 (6): 371-379.
  • 51. Thomas P., Harvey S., Gruner T. i wsp.: The buccal cytome and micronucleus frequency is substantially altered in Down’s syndrome and normal ageing compared to young healthy controls. Mutat. Res. 2008; 638: 37-47.
  • 52. Holland N., Bolognesi C., Kirsch-Volders M. i wsp.: The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat. Res. 2008; 659: 93-108.
  • 53. Scheuplein R., Charnley G., Dourson M.: Differential sensitivity of children and adults to chemical toxicity. I. Biological asis. Regul. Toxicol. Pharmacol. 2002; 35: 429-447.
  • 54. Wild C.P., Kleinjans J.: Children and increased susceptibility to environmental carcinogens: evidence or empathy? Cancer Epidemiol. Biomarkers Prev. 2003; 12: 1389-1394.
  • 55. Landrigan P.J., Kimmel C.A., Correa A. i wsp.: Children’s health and the environment: public health issues and challenges for risk assessment. Environ. Health Perspect. 2004; 112: 257-265.
  • 56. Sobol M.V., Bezrukov V.F.: The micronuclei frequencies in the buccal cell epithelium of young people of different age and gender in Ukraine. Tsitol. Genet. 2007; 41: 56-58.
  • 57. Huen K., Gunn L., Duramad P. i wsp.: Application of a geographic information system to explore associations between air pollution and micronucleus frequencies in African American children and adults. Environ. Mol. Mutagen. 2006; 47: 236-246.
  • 58. Holland N., Fucic A., Merlo D.F. i wsp: Micronuclei in neonates and children: effects of environmental, genetic, demographic and disease variables. Mutagenesis 2011; 26: 51-56.
  • 59. Kapka L., Kwapuliński J., Mielżyńska D.: Test mikrojądrowy w komórkach nabłonkowych jamy ustnej jako nieinwazyjny biomarker narażenia środowiskowego na ołów u dzieci. Medycyna Środowiskowa 2007; 10: 31-38.
  • 60. Gonsebatt M.E., del Valle M., Fourtoul T. i wsp.: Micronucleus (MN) frequency in nasal respiratory epithelium from young adults living in urban areas with different levels of air pollution. Mutat. Res. 1997; 379: 198.
  • 61. Chen C., Arjomandi M., Qin H. i wsp.: Cytogenetic damage in buccal epithelia and peripheral lymphocytes of young healthy individuals exposed to ozone. Mutagenesis 2006; 21: 131-137.
  • 62. Wronka I., Schmager J., Borowiecka A.: The population research on incidence of micronuclei in the cells of oral epithelium. Scripta Periodica 2000; III, 3.
  • 63. Moore L, Wiencke J., Eng C. i wsp.: Evaluation of buccal cell collection protocols for genetic susceptibility studies. Biomarkers 2001; 6 (6): 448-454.
  • 64. Mulot C., Stu􀀀􀀀cker I., Clavel J. i wsp.: Collection of human genomic DNA from buccal cells for genetics studies: Comparison between cytobrush, mouthwash, and treated Card. J. Biomed. Biotechn. 2005; 3:291-296.
  • 65. Garcia-Closas M., Moore L.E., Rabkin C.S. i wsp.: Quantitation of DNA in buccal cell samples collected in epidemiological studies. Biomarkers 2006; 11(5): 472-479.
  • 66. Aidar M.: A simple and cost-effective protocol for DNA isolation from buccal epithelial cells. Braz. Dent. J. 2007; 18(2): 148-152.
  • 67. Eren K., Özmerių N., SĢardasĢ S.: Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation of chlorhexidine. Clin. Oral. Invest. 2002; 6:150-154.
  • 68. Mondal N.K., Bhattacharya P., Ray M.R.: Assessment of DNA damage by comet assay and fast halo assay in buccal epithelial cells of Indian women chronically exposed to biomass smoke. Int. J. Hygiene Environ. Health 2011; 214: 311- 318.
  • 69. Halfon P., Ouzan D., Khiri H. i wsp.: Detection of IL28B SNP DNA from buccal epithelial cells, small amounts of serum, and dried blood spots. PloS ONE 2012; 7(3): e33000.
  • 70. Sridhar S., Schembri F., Zeskind J. i wsp.: Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics 2008, 9: 259-272.
  • 71. da Silva A.E., Rados P.V., da Silva Lauxen I. i wsp.: Nuclear changes in tongue epithelial cells following panoramic radiography. Mutat. Res. 2007; 632: 121-125.
  • 72. Martins R.A., da Silva Gomes G.A., Aguiar Jr. O. i wsp.: Biomonitoring of oral epithelial cells in petrol station attendants: Comparison between buccal mucosa and lateral border of the tongue. Environ. Int. 2009; 35: 1062-1065.
  • 73. Stich H.F., Stich W., Parida B.B.: Elevated frequency of micronucleated cells in the buccal cells mucosa of individuals at high risk for oral cancer: betel quid chewers. Cancer Lett. 1982; 17: 125-134.
  • 74. Rajkokila K., Shajithanoop S., Usharani M.V.: Nuclear anomalies in exfoliated buccal epithelial cells of petrol station attendants in Tamilnadu, South India. J. Med. Genet. Genom. 2010; 2(2): 18-22.
  • 75. Nersesyan A., Kundi M., Atefie K. i wsp.: Effect of staining procedures on the results of micronucleus assays with exfoliated oral mucosa cells. Cancer Epidemiol. Biomarkers Prev. 2006;15(10): 1835-1840.

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3ae46785-f4ab-4354-8ab4-ca5ac68d0d25
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.