Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 68 | 6 | 407–414

Article title

Polimorfizm 1181G/C genu OPG i jego związek z osteoporozą u kobiet po menopauzie

Content

Title variants

EN
1181G/C polymorphism of OPG gene and its association with osteoporosis in postmenopausal women

Languages of publication

PL

Abstracts

PL
WSTĘP Osteoporoza jest układową chorobą układu kostnego, charakteryzującą się niską masą kostną i zaburzeniami mikroarchitektury kości, ze zwiększoną kruchością kości oraz podatnością na złamania. Istnieje istotny wkład genetyczny tak w gęstość kości, jak i jej przemianę. Sugeruje się, że polimorfizm OPG może wpływać na gęstość kości oraz jej przemianę. CEL PRACY Celem pracy było zbadanie częstości występowania polimorfizmu genu OPG oraz ocena jego związku z parametrami klinicznymi dotyczącymi obrotu kostnego i stopnia zaawansowania osteoporozy pomenopauzalnej. MATERIAŁY I METODY Badania przeprowadzono na grupie 570 kobiet w wieku postmenopauzalnym (404 kobiety) i rozrodczym (166 kobiet). Grupa w wieku postmenopauzalnym obejmowała kobiety z osteoporozą, osteopenią i zdrowe. Kobiety w wieku rozrodczym były zdrowe. Zbadano częstość występowania polimorfizmu badanego genu w grupie pacjentek z oznaczoną gęstością mineralną kości (bone mineral density – BMD) oraz w grupie kontrolnej. Badanie przeprowadzono metodą RFLP-PCR. WYNIKI Wykazano korelację polimorfizmu G1181C genu OPG z masą ciała i masą urodzeniową oraz związek ze zmniejszoną BMD, a także zwiększonym ryzykiem powstawania osteoporozy pomenopauzalnej. WNIOSKI Genotypy homozygotyczne polimorfizmu G1181C genu OPG mogą mieć wpływ na masę urodzeniową kobiet i wzrost ryzyka wystąpienia osteoporozy.
EN
INTRODUCTION Osteoporosis is a systemic disease of the bone system, characterized by low bone mass and bone microarchitecture disturbances, increased bone brittleness and susceptibility to fracture. There is an essential genetic contribution to bone density, as well as its transformation. It is suggested that the OPG polymorphism may affect bone density and its transformation. AIM OF STUDY The aim of the study was to examine the incidence of OPG gene polymorphism and evaluate its association with the clinical parameters concerning bone turnover and the degree of postmenopausal osteoporosis development. M ATERIAL AND METHODS The study was conducted among a group of 570 women at postmenopausal age (404) and reproductive age (166). The group at postmenopausal age included women with osteoporosis, osteopenia as well as healthy individuals. The women at reproductive age were healthy. The polymorphism incidence of the examined gene in a group of patients with determined bone mineral density (BMD) and in the control group was studied. The study was performed by means of the RFLP-PCR method. RESULTS The correlation of the G1181 polymorphism of the OPG gene with body mass and birth mass was demonstrated as well as the association of decreased bone density and increased risk of postmenopausal osteoporosis development. CONCLUSIONS Homozygotic genotypes of the G1181C polymorphism of the OPG gene may affect women’s birth mass and an increased risk of osteoporosis development.

Keywords

Discipline

Year

Volume

68

Issue

6

Pages

407–414

Physical description

Contributors

  • Katedra i Zakład Histologii Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach ul. Jordana 19 41-808 Zabrze tel. +48 32 272 28 42
author
  • Centrum Dydaktyki i Symulacji Medycznej Śląskiego Uniwersytetu Medycznego w Katowicach
  • Zakład Komputerowych Systemów Biomedycznych Uniwersytetu Śląskiego w Katowicach

References

  • 1. Kostenuik P.J., Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr. Pharm. Des. 2001; 7: 613–635.
  • 2. Schoppet M., Preissner K.T., Hofbauer L.C. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler. Thromb. Vasc. Biol. 2002; 22: 549–553.
  • 3. Schneeweis L.A., Willard D., Milla M.E. Functional dissection of osteoprotegerin and its interaction with receptor activator of NF-B ligand. J. Biol. Chem. 2005; 280: 41155–41164.
  • 4. Théoleyre S., Kwan Tat S, Vusio P. et al. Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: role in the interactions with receptor activator of nuclear factor B ligand (RANKL) and RANK. Biochem. Biophys. Res. Commun. 2006; 347: 460–467.
  • 5. Kapczuk K., Sowińska-Przepiera E., Friebe Z. Układ osteoprotegeryna/RANKL/RANK w aspekcie terapii osteoporozy pomenopauzalnej. Ginekol. Pol. 2003; 74: 323–328.
  • 6. Aubin J.E., Bonnelye E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos. Int. 2000; 11: 905–913.
  • 7. Liu X.H., Kirschenbaum A., Yao S., Levine A.C. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-B (RANK) ligand/RANK system. Endocrinology 2005; 146: 1991–1998.
  • 8. Arko B., Prezeli J., Kocijancic A., Kornel R., Matv J. Association of the osteoprotegerin gene polymorphism with bone mineral density in postmenopausal women. Maturitas 2005; 51: 270–279.
  • 9. Zhano H.Y., Liu J.M., Ning G. et al. The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos. Int. 2005; 16: 1519–1524.
  • 10. Udagawa N., Takahashi N., Yasuda H. et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 2000; 141: 3478–3484.
  • 11. Theill L.E., Boyle W.J., Penninger J.M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 2002; 20: 795–823.
  • 12. Suda T., Kobayashi K., Jimi E., Udagawa N., Takahashi N. The molecular basis of osteoclast differentiation and activation. Novartis Found Symp. 2001; 232: 235–247.
  • 13. Peacock M., Turner C.H., Econs M.J., Foroud T. Genetics of osteoporosis. Endocr. Rev. 2002; 23: 303–326.
  • 14. McCabe L.D., Martin B.R., McCabe G.P., Johnston C.C., Weaver C.M., Peacock M. Dairy intakes affect bone density in the elderly. Am. J. Clin. Nutr. 2004; 80: 1066–1074.
  • 15. Vega D., Maalouf N.M., Sakhaee K. The role of receptor activator of nuclear factor-B (RANK) /RANK ligand/osteoprotegerin: clinical implications. J. Clin. Endocrinol. Metab. 2007; 92: 4514–4521.
  • 16. Hamdy N.A.T. Osteoprotegerin as a potential therapy for osteoporosis. Curr. Rheumatol. Reports. 2006; 8: 50–54.
  • 17. Eghbali-Fatourechi G., Khosla S., Sanyal A., Boyle W.J., Lacey D.L., Riggs B.L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 2003; 111: 1221–1230.
  • 18. Kostenuik P.J, Capparelli C., Morony S. et al. OPG and PTH-(1-34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology 2001; 142: 4295–4304.
  • 19. Bolon B., Carter C., Daris M. et al. Osteoprotegerin (OPG) gene therapy in animal models of osteoarticular disease. Arthritis Res. 2001; 3: 5.
  • 20. Hofbauer L.C., Khosla S., Dunstan C.R., Lacey D.L., Spelsberg T.C., Riggs B.L. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999; 140: 4367–4370.
  • 21. Bekker P.J., Holloway D., Nakanishi A., Arrighi M., Leese P.T., Dunstan C.R. The effect of a single dose of osteoprotegerin in postmenopausal women. J. Bone Miner. Res. 2001; 16: 348–360.
  • 22. Boyce B.F., Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008; 473: 139–146.
  • 23. Bord S., Ireland D.C., Beavan S.R., Compston J.E. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 2003; 32: 136–141.
  • 24. Khosla S., Atkinson E.J., Dunstan C.R., O’Fallon W.M. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J. Clin. Endocrinol. Metab. 2002; 87: 1550–1554.
  • 25. Langdahl B.L., Carstens M., Stenkjaer L., Eriksen E.F. Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J. Bone Mineral. Res. 2002; 17: 1245–1255.
  • 26. Ohmori H., Makita Y., Funamizu M., Hirooka K., Hosoi T., Orimo H. Linkage and association analyses of the osteoprotegerin gene locus with human osteoporosis. J. Hum. Genet. 2002; 47: 400–406.
  • 27. Vidal C., Brincat M., Xuereb Anastasi A. TNFRSF11B gene variants and bone mineral density in postmenopausal women in Malta. Maturitas 2006; 53: 386–395.
  • 28. Arnold A., Horst S.A., Gardella T.J., Baba H., Levine M.A., Kronenberg H.M. Mutation of the signal peptide encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J. Clin. Invest. 1990; 86: 1084–1087.
  • 29. Kim J.G., Kim J.H., Kim J.Y. et al. Association between osteoprotegerin (OPG), receptor activator of nuclear factor-appaB (RANK), and RANK ligand (RANKL) gene polymorphisms and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause 2007; 14: 913–918.
  • 30. Choi J.Y., Shin A., Park S.K. et al. Genetic polymorphisms of OPG, RANK, and ESR1 and bone mineral density in Korean postmenopausal women. Calcif. Tissue Int. 2005; 77: 152–159.
  • 31. Wynne F., Drummond F., O'Sullivan K. et al. Investigation of the genetic influence of the OPG, VDR (Fokl), and COLIA1 Spl polymorphisms on BMD in the Irish population. Calcif .Tissue Int. 2002; 71: 26–35.
  • 32. Garcia-Unzueta M.T., Riancho J.A., Zarrabeitia M.T. et al. Association of the 163A/G and 1181G/C osteoprotegerin polymorphism with bone mineral density. Horm. Metab. Res. 2008; 40: 219–224.
  • 33. Tanaka Y., Nakayamada S., Okada Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy 2005; 4: 325–328.
  • 34. Weitzmann M.N., Pacifici R. Estrogen regulation of immune cell bone interactions. Ann. NY Acad. Sci. 2006; 1068: 256–274.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-3abdbad3-46bb-428f-b4c1-215727cb21bc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.