PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 99 | 133-147
Article title

On Unconventional Division by Zero

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Unconventional division by zero can apply to those cases in which some directly incomparable (i.e. unlike or represented in different algebraic bases) abstract objects taken from two distinct algebraic spaces are acted upon or need to be compared. Multispatial reality paradigm is thus necessary for overcoming conceptual inconsistencies arising in the domain of complex numbers when certain valid abstract reasonings from the hypercomplex domains of quaternions and octonions are carried over back to the 2D complex domain.
Discipline
Year
Volume
99
Pages
133-147
Physical description
References
  • [1] Pranesachar C.R. Brahmagupta, mathematician par excellence https://www.ias.ac.in/article/fulltext/reso/017/03/0247-0252
  • See also: Brahmagupta http://www.storyofmathematics.com/indian_brahmagupta.html http://kobotis.net/math/MathematicalWorlds/Fall2016/131/Biography/Brahmagupta.pdf p.4;
  • [2] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(2) (2018) 171-197
  • [3] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(2) (2018) 190-216
  • [4] Couturat L. De L’infini mathématique. New York: Burt Franklin, 1969, pp.99, 254, 278,435.
  • [5] Euler L. Elements of algebra. New York: Springer, 1984, pp.22,23f.
  • [6] Couturat L. Les principes des mathématiques : IV – Le continu. Rev. Mét. Morale 12 (1904) 664-698, see p. 675.
  • [7] Żelazko W. Banach algebras. Warszawa: PWN, 1973, p.7.
  • [8] Fokas A. et al. Painlevé transcendents. The Riemann-Hilbert approach. Providence, RI: AMS, 2006, p.97ff.
  • [9] Laesen R. Banach algebras. An introduction. New York: Marcel Dekker, 1973, p. 201f.
  • [10] Perko L. Differential equations and dynamical systems. New York: Springer, 1996, p. 264ff.
  • [11] Dieudonné J. Treatise on analysis II. New York: Academic Press, 1970, p. 151ff.
  • [12] Michiwaki H., Saitoh S. & Yamada M. Reality of the division by zero z/0=0. Int. J. Appl. Phys. Math. 6(1) (2016) 1-8
  • [13] Michiwaki H, Okumura H. & Saitoh S. Division by Zero z/0 = 0 in Euclidean Spaces. Int. J. Math. Computation 28(1) (2017) 1-16
  • [14] Okumura H., Saitoh S. & Matsuura T. Relations of 0 and ∞. J. Tech. Soc. Sci. 1(1) (2017) 70-77 see p.74 on
  • [15] Matsuura T. & Saitoh S. Matrices and division by zero z/0=0. Adv. Lin. Alg. Matrix Theor. 6 (2016) 51-58
  • [16] Czajko J. On Cantorian Spacetime over Number Systems with Division by Zero. Chaos Solit. Fract. 21 (2004) 261-271
  • [17] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235
  • [18] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72
  • [19] Kolata G. Topologists startled by new results. First a famous problem was solved, and now there is proof that there is more than one four-dimensional spacetime. Science 217 (1982) 432-433.
  • [20] Dixon G.M. Division algebras, lattices, physics, windmill tilting. USA: CPSIA info at www. JCGtesting.com, see pp. 15, 21f, 28 and references therein.
  • [21] Poincaré H. Science and hypothesis. New York: Dover, 1952, p.50.
  • [22] Greenberg M.J. Euclidean and non-Euclidean geometries. Development and history. New York: Freeman, 1993, p.293.
  • [23] Klein F. Zur Interpretation der komplexen Elemente in der Geometrie. [pp. 402-405 in: Klein F. Gesammelte mathematische Abhndlungen I. Berlin: Springer, 1973, see p. 405].
  • [24] Deaux R. Introduction to the geometry of complex numbers. Minneola, NY: Dover, 2008, p. 20ff.
  • [25] Borwein J.M. & Vanderwerff J.D. Convex functions: Constructions, characterizations and Counterexamples, Cambridge University Press, 2010.
  • [26] Lichnerowicz A. Linear algebra and analysis. San Francisco: Holden Day, 1967, p. 10ff.
  • [27] Halmos P.R. Finite-dimensional vector spaces. Mansfield Centre, CT: Martino Publishing, 2012, p. 8ff.
  • [28] Weil A. Foundations of algebraic geometry. Providence, RI: AMS, 1989, p. 26ff.
  • [29] Cartan É. Le principe de dualité et la théorie des groupes simples et semi-simples. [pp. 555-568 in: Cartan É. Œuvres complètes I. Paris: CNRS, 1984, see p. 561].
  • [30] Couturat L. Les principes des mathématiques. Hildesheim : Georg Olms, 1965, p. 134. annd counterexamples. Cambridge: Cambridge Univ. Press, 2010, p. 313f.
  • [31] Altman A. & Kleiman S. Introduction to Grothendieck duality theory. Berlin: Springer, 1970, p. 5ff.
  • [32] Abian A. The theory of sets and transfinite arithmetic. Philadelphia: Saunders, 1965, p. 126.
  • [33] Volkov D.V. et al. Adler’s principle and algebraic duality. Theor. Math. Phys. 15 (1973) 495-504.
  • [34] Dieudonne J. Éléments d’analyse 9. Paris: Gauthier-Villars, 1982, p. 30ff.
  • [35] Dieudonne J. Éléments d’analyse 6. Paris: Gauthier-Villars, 1975, p. 97ff.
  • [36] Van Mill J. The infinite-dimensional topology of function spaces. Amsterdam: Elsevier, 2001, p. 399ff.
  • [37] Dieudonné J. Panorama des mathématiques pures. La choix bourbachique. Paris : Gauthier-Villars, 1977, p. 248.
  • [38] Zwiebach B. Dirac’s bra and ket notation. MIT OCW (OpenCourseWare) (2013)
  • [39] F. Morley & F.V. Morley, Inversive geometry. New York: Chelsea Publishing, 1954, pp. 39, 44, 74.
  • [40] E. Hille, Analytic Function Theory I. New York: Chelsea Publishing, 1973, p.47.
  • [41] Couturat L. The algebra of logic. Mineola, NJ: Dover, 2005, p. 22.
  • [42] Lehmke S. Degress of truth and degrees of validity. [pp. 192-236 in: Novák V. & Perfilieva I. (Eds.) Discovering the world with fuzzy logic. Heidelberg: Physica Verlag, 2000].
  • [43] Hutson V., Pym J.S. & Cloud M.J. Applications of functional analysis and operator theory. Amsterdam: Elsevier, 2005, pp. 4.26.
  • [44] Bartle R.G. A modern theory of integration. Providence, RI: AMS, 2001, pp. 249f, 255ff.
  • [45] Izumiya S. et al. Differential geometry from a singularity theory viewpoint. Singapore: World Scientific, 2016, p. 104.
  • [46] Fukui T., Koike S. & Kuo T.C. Blow-analytic equisingularities, properties, problems and progress. [pp. 8-29 in: Fukuda T. et al. Real analytic and algebraic singularities. Harley: Addison-Wesley Longman, 1998].
  • [47] Sundstrom T. Mathematical raesoning writing and proof. Upper Saddle River, NJ, Perason Education, 2003, p. 122.
  • [48] Johnson D.L. Elements of logic via numbers and sets. London: Springer, 1998, p. 8f. [49] Solow D. How to read and do proofs. An introduction to mathematical u process. New York: Wiley, 2002, p. 91ff.
  • [49] Moll V.H. Numbers and functions. From a classical-experimental mathematician’s point of view. Providence, RI: AMS, 2012, p. 44ff.
  • [50] Natanson I.P. Constructive function theory III: Interpolation and approximation quadratures. New York: Frederick Ungar, 19654, p. 23ff.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-3a9d46ab-dfd0-41cd-84b5-bf7527e63d43
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.