PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 24 | 61 - 74
Article title

ISOLATION OF CHITIN FROM APLYSINA AEROPHOBA USING A MICROWAVE APPROACH

Content
Title variants
Languages of publication
EN
Abstracts
EN
Chitin of poriferan origin represents a unique renewable source of three-dimensional (3D) microtubular centimetre-sized scaffolds, which have recently been recognized as having applications in biomedicine, tissue engineering, and extreme biomimetics. The standard method of chitin isolation from sponges requires concentrated solutions of acids and bases and remains a time-consuming process (lasting up to seven days). Here, for the first time, we propose a new microwave-based express method for the isolation of chitinous scaffolds from the marine demosponge Aplysina aerophoba cultivated under marine farming conditions. Our method requires only 41% of the time of the classical process and does not lead to the deacetylation of chitin to chitosan. Alterations in microstructure and chemical composition due to the microwave treatment were investigated using various analytical approaches, including Calcofluor White staining, chitinase digestion, scattering electron microscopy, and Raman and ATR-FTIR spectroscopy. It was demonstrated that microwave irradiation has no impact on the chemical composition of the isolated chitin.
Publisher

Year
Volume
24
Pages
61 - 74
Physical description
Contributors
  • Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology
References
  • [1] Kaya M, Mujtaba M, Ehrlich H, Salaberria A.M, Baran T, Amemiya C.T, Galli R, Akyuz L, Sargin I, Labidi J; (2017) On Chemistry of γ-chitin. Carbohyd Polym 176, 177-186. DOI:10.1016/j.carbpol.2017.08.076
  • [2] Jang M.K, Kong B.G, Jeong Y.I, Lee C. H, Nah J.W; (2004) Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. J Polym Sci A 42(14), 3423-3432. DOI: 10.1002/pola.20176
  • [3] Wysokowski M, Petrenko I, Stelling AL, Stawski D, Jesionowski T, Ehrlich H; (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7(2), 235–265. DOI:10.3390/polym7020235
  • [4] Ehrlich H, Krautte, M, Hanke T, Simon P, Knieb C, Heinemann S, Worch H; (2007). First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool 306, 1–7. DOI:10.1002/jez.b.
  • [5] Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov VV, Botting JP, Botting J, Ilan M, Ereskovsky AV, Muricy G, Worch H, Mensch A, Born R, Springer A, Kummer K, Vyalikh DV, Molodtsov SL, Kurek DV, Kammer M, Paasch S, Brunner E; (2010) Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater 22(4), 1462–1471. DOI:10.1021/cm9026607.
  • [6] Ehrlich H, Steck E., Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo JL, Shiaparelli S, Ereskovsky AV, Schupp P, Born R, Worch H, Bazhenov VV, Kurek D, Varlamow V, Vyalikh D, Kummer K, Sivkov VV, Molodtsov SL, Meissner H, Richter G, Hunoldt S, Kammer M, Paasch S, Krasokhin V, Patzke G, Brunner E, Richter W; (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. Int J Biol Macromol 47(2), 141–145. DOI:.1016/j.ijbiomac.2010.05.009.
  • [7] Ehrlich H, (2018) Chitin of poriferan origin as a unique biological material. In: Blue Biotechnology: Production and Use of Marine Molecules, Volume 2. La Barre S, Bates SS, (Eds.) Wiley–VCH, Verlag, pp. 821–854.
  • [8] Ehrlich H. (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin. In: Biomimetic Biomaterials: Structure and Applications. Ruys A, (Ed.) Woodhead Publishing, Cambridge pp. 47–67.
  • [9] Steck E, Burkhardt M, Ehrlich, H, Richter W; (2010) Discrimination between cells of murine and human origin in xenotransplants by species specific genomic in situ hybridization. Xenotransplantation 17(2), 153–159. DOI:10.1111/j.1399-3089.2010.00577.x
  • [10] Born R, Ehrlich H, Bazhenov VV, Shapkin NP; (2010) Investigation of nanoorganized biomaterials of marine origin. Arab J Chem 3, 27–32. DOI:10.1016/j.arabjc.2009.12.005.
  • [11] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R; (2014) Chitin and chitosan in selected biomedical applications. Progress Pol Sci 39, 1644–1667. DOI:10.1016/j.progpolymsci.2014.02.008.
  • [12] Rogulska ОY, Revenko ОB, Petrenko YO, Ehrlich H, Petrenko ОY; (2013) Prospects for the application of Aplysinidae family marine sponge skeletons and mesenchymal stromal cells in tissue engineering. Biotechnol Acta 6(5), 115–121. DOI:10.15407/biotech6.05.115.
  • [13] Cruz–Barraza JA, Carballo JL, Rocha–Olivares A, Ehrlich H, Hog M; (2012) Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific. PLoS one 7, e42049. DOI:10.1371/journal.pone.0042049.
  • [14] Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pee KH; (2009) Chitin-based organic networks – an integral part of cell wall biosilica from the diatom Thalassiosira pseudonana. Angew Chemie Internat Ed 48, 9724–9727. DOI:10.1002/anie.200905028.
  • [15] Spinde K, Kammer M, Freyer K, Ehrlich H, Vournakis J, Brunner E; (2011) Biomimetic silicification of chitin from diatoms. Chem Mater 23, 2973–2978. DOI:10.1021/cm200677d.
  • [16] Pallela R, Ehrlich H (Eds.) (2016) Marine Sponges: Chemicobiological and Biomedical Applications. Springer India, pp. 381.
  • [17] Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H; (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool 308, 347–356. DOI:10.1002/jez.b.
  • [18] Ehrlich H, Bazhenov VV, Debitus C, de Voogd N, Galli R, Tsurkan MV, Wysokowski M, Meissner H, Bulut E, Kaya M, Jesionowski T; (2017) Isolation and identification of chitin from heavy mineralized skeleton of Suberea clavata (Verongida: Demospongiae: Porifera) marine demosponge. Int J Biol Macromol 104, 1706–1712. DOI:10.1016/j.ijbiomac.2017.01.141.
  • [19] Żółtowska-Aksamitowska S, Tsurkan MV, Lim SC, Meissner H, Tabachnick K, Shaala LA, Youssef DTA, Ivanenko VN, Petrenko I, Wysokowski M, Bechmann N, Joseph Y, Jesionowski T, Ehrlich H; (2018) The demosponge Pseudoceratina purpurea as a new source of fibrous chitin. Int J Biol Macromol 112, 1021–1028. DOI:10.1016/j.ijbiomac.2018.02.071.
  • [20] Ehrlich H, Kaluzhnaya OV, Brunner E, Tsurkan MV, Ereskovsky A, Ilan M, Tabachnick KR, Bazhenov VV, Paasch S, Kammer M, Born R, Stelling A, Galli R, Belikov S, Petrova OV, Sivkov VV, Vyalikh D, Hunoldt S, Wörheide G; (2013) Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J Struct Biol 183(3), 474–483. DOI:10.1016/j.jsb.2013.06.015.
  • [21] Ehrlich H, Kaluzhnaya OV, Tsurkan MV, Ereskovsky A, Tabachnick KR, Ilan M, Stelling A, Galli R, Petrova OV, Nekipelov SV, Sivkov VN, Vyalikh D, Born R, Behm T, Ehrlich A, Chernogor LI, Belikov S, Janussen D, Bazhenov VV, Wörheide G; (2013) First report on chitinous holdfast in sponges (Porifera). Proc R Soc B: Biol Sci 280(1762), 20130339. DOI:10.1098/rspb.2013.0339.
  • [22] Ehrlich H, Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo JL, Shiaparelli S, Ereskovsky AV, Schupp P, Born R. Worch H, Bazhenov VV, Kurek D, Varlamow V, Vyalikh D, Kummer K, Sivkov VV, Molodtsov SL, Meissner H, Richter G, Steck E, Richter W, Hunoldt S, Kammer M, Paasch S, Krasokhin V, Patzke G, Brunner E; (2010) Three dimensional chitin–based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Biol Macromol 47, 132–140. DOI:10.1016/j.ijbiomac.2010.05.007.
  • [23] Ehrlich H, Brunner E., Richter W, Ilan M, Schupp P; (2011) Two or three–diensional cleaned chitin skeleton of dictyoceratid sponges. Method for the production and use thereof. Patent no. WO 2011/023531 A2.
  • [24] Schleuter D, Günther A, Paasch S, Ehrlich H, Kljajic Z, Hanke T, Bernhard G, Brunner E; (2013) Chitin–based renewable materials from marine sponges for uranium adsorption. Carbohyd Pol 92(1), 712–718. DOI:10.1016/j.carbpol.2012.08.090.
  • [25] Mutsenko VV, Rogulska OY, Petrenko YA, Ehrlich H, Mazur SP, Volkova NA, Petrenko AY; (2016) Cryosensitivity of mesenchymal stromal cells cryopreserved within flat scaffolds derived from skeletons of marine sponges Ianthella basta. Problems Cryobiol Cryomed 26, 13–23. DOI:10.15407/cryo26.01.013.
  • [26] Mutsenko VV, Bazhenov VV, Rogulska O, Tarusin DN, Schütz K, Brüggemeier S, Gossla E, Akkineni AR, Meißner H, Lode A, Meschke S, Ehrlich A, Petović S, Martinović R, Djurović M, Stelling AL, Nikulin S, Rodin S, Tonevitsky A, Gelinsky M, Petrenko AY, Glasmacher B, Ehrlich H; (2017). 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. Int J Biol Macromol 104, 1966–1974. DOI:10.1016/j.ijbiomac.2017.03.116
  • [27] Mutsenko VV, Gryshkov O, Lauterboeck L, Rogulska O, Tarusin DN, Bazhenov VV, Schütz K, Brüggemeier S, Gossla E, Akkineni AR, Meißner H, Lode A, Meschke S, Fromont J, Stelling AL, Tabachnik KR, Gelinsky M, Nikulin S, Rodin S, Tonevitsky AG, Petrenko AY, Glasmacher B, Schupp PJ, Ehrlich H; (2017) Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int J Biol Macromol 104, 1955–1965. DOI:10.1016/j.ijbiomac.2017.03.161
  • [28] Bazhenov VV, Wysokowski M, Petrenko I, Stawski D, Sapozhnikov P, Born R, Stelling AL, Kaiser S, Jesionowski T; (2015) Preparation of monolithic silica–chitin composite under extremebiomimetic conditions. Int J Biol Macromol 76,33-38. DOI: 10.1016/j.ijbiomac.2015.02.012.
  • [29] Wysokowski M, Motylenko M, Beyer J, Makarova A, Stöcker H, Walter J, Galli R, Kaiser S, Vyalikh D, Bazhenov VV, Petrenko I, Stelling AL, Molodtsov S, Stawski D, Kurzydowski KJ, Langer E, Tsurkan M, Jesionowski T, Heitmann J, Meyer DC, Ehrlich H; (2015) Extreme biomimetic approach for developing novel nanocomposites with photoluminescent properties. Nano Res 8(7), 2288– 2301. DOI:10.1007/s12274-015-0739-5
  • [30] Wysokowski M, Motylenko M, Walter J, Lota G, Wojciechowski J, Stöcker H, Galli R, Stelling AL, Himcinschi C, Niederschlag E, Langer E, Bazhenov VV, Szatkowski T, Zdarta J, Pertenko I, Kljajic Z, Leisegang T, Molodtsov SL, Meyer DC, Jesionowski T, Ehrlich H; (2014) Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Adv 4, 61743–61752. DOI:10.1039/C4RA10017D.
  • [31] Wysokowski M, Motylenko M, Bazhenov VV, Stawski D, Petrenko I, Ehrlich A, Behm T, Kljajic Z, Stelling AL, Jesionowski T, Ehrlich H; (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7(3), 248–260. DOI: 10.1007/s11706-013-0212-x
  • [32] Wysokowski M, Motylenko M, Rafaja D, Koltsov I, Stöcker H, Szalaty TJ, Bazhenov VV, Stelling AL, Beyer J, Heitmann J, Jesionowski T, Petovic S, Đurović M, Ehrlich H; (2017) Extreme biomimetic approach for synthesis of nanocrystalline chitin–(Ti,Zr)O2 multiphase composites. Mater Chem Phys 188, 115–124. DOI:10.1016/j.matchemphys.2016.12.038.
  • [33] Ehrlich H, Simon P, Motylenko M, Wysokowski M, Bazhenov VV, Galli R, Stelling AL, Stawski D, Ilan M, Stöcker H, Abendroth B, Born R, Jesionowski T, Kurzydlowski KJ, Meyer DC; (2013) Extreme Biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J Mater Chem B 1, 5092–5099. DOI:10.1039/C3TB20676A.
  • [34] Wysokowski M, Motylenko M, Stöcker H, Bazhenov VV, Langer E, Dobrowolska A, Czaczyk K, Galli R, Stelling AL, Behm T, Klapiszewski Ł, Ambrożewicz D, Nowacka M, Molodtsov SL, Abendroth B, Meyer DC, Kurzydlowski KJ, Jesionowski T, Ehrlich H; (2013) An extreme biomimetic approach: hydrothermal synthesis of β–chitin/ZnO nanostructured composites. J Mater Chem B 1, 6469–6476. DOI:10.1039/C3TB21186J.
  • [35] Petrenko I, Bazhenov VV, Galli R, Wysokowski M, Fromont J, Schupp PJ, Stelling AL, Niederschlag E, Stöcker H, Kutsova VZ, Jesionowski T, Ehrlich H; (2017) Chitin of poriferan origin and the bioelectrometallurgy of copper/copper oxide. Int J Biol Macromol 104(Pt B), 1626–1632. DOI:10.1016/j.ijbiomac.2017.01.084.
  • [36] Ehrlich H, Bazhenov VV, Meschke S, Bürger M, Ehrlich A, Petovic S, Durovic M. (2016) Marine invertebrates of Boka Kotorska Bay unique sources for bioinspired materials science. In: The Boka Kotorska Bay Environment, Series: The Handbook of Environmental Chemistry. Djurović M, Semenov AV, Zonn IS, Kostianoy AG, (Eds.) Springer International Publishing, Berlin, Heidelberg, pp. 313–334
  • [37] Bechmann N, Ehrlich H, Eisenhofer G, Ehrlich A, Meschke S, Ziegler CG, Bornstein SR; (2018) Anti–tumorigenic and anti–metastatic activity of the sponge–derived marine drugs Aeroplysinin–1 and Isofistularin–3 against Pheochromocytoma in vitro. Mar Drugs 16, 172. DOI:10.3390/md16050172.
  • [38] Klinger C, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan MV, Galli R, Petrenko I, Machałowski T, Ereskovsky A, Martinovic R, Muzychka L, Smolii OB, Bechmann N, Ivanenko V, Schupp P, Jesionowski T, Giovine M, Joseph Y, Bornstein SR, Voronkina A, Ehrlich H; (2019) Express method for isolation of ready-to-use 3D chitin scaffolds from Aplysina archeri (Aplysineidae: Verongiida) demosponge, Mar Drugs 17(2), 131. DOI:10.3390/md17020131.
  • [39] Bo M, Bavestrello G, Kurek D, Paasch S, Brunner E, Born R, Galli R, Stelling AL, Sivkov VN, Petrova OV, Vyalikh D, Kummer K, Molodtsov SL, Nowak D, Nowak J, Ehrlich H; (2012) Isolation and identification of chitin in black coral Paranthipates larix (Anthozoa: Cnidaria). Int J Biol Macromol 51, 129–137. DOI:10.1016/j.ijbiomac.2012.04.016.
  • [40] Connors M, Ehrlich H, Hog M, Godeffroy C, Araya S, Kallai I, Gazit D, Boyce MC. Ortiz C; (2012) Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. J Struct Biol 177, 314–328. DOI:10.1016/j.jsb.2011.12.019.
  • [41] Wysokowski M, Zaton M, Bazhenov VV, Behm T, Ehrlich A. Stelling AL, Hog M, Ehrlich H; (2014) Identification of chitin in 200-million-year-old gastropod egg capsules. Paleobiology 40(4), 529–540. DOI: 10.1666/13083.
  • [42] Ehrlich H, Rigby JK, Botting J, Tsurkan M, Werner C, Schwille P, Petrasek Z, Pisera A, Simon P, Sivkov V, Vyalikh D, Molodtsov SL, Kurek D, Kammer M, Hunoldt S, Born R, Stawski D. Steinhof A, Bazhenov VV, Geisler T; (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3, 3497. DOI:10.1038/srep03497
  • [43] El Knidri H, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A; (2016) Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf Environ 104, 395-405. DOI:10.1016/j.psep.2016.09.020.
  • [44] Sahu A, Goswami P, Bora U; (2009) Microwave mediated rapid synthesis of chitosan. J Mater Sci: Mater Med 20, 171–175. DOI:10.1007/s10856-008-3549-4.
  • [45] Lertwattanaseri T, Ichikawa N, Mizoguchi T, Tanaka Y, Chirachanchai S; (2009) Microwave technique for efficient deacetylation of chitin nanowhiskers to a chitosan nanoscaffold. Carbohydr Res 344, 331–335. DOI:10.1016/j.carres.2008.10.018.
  • [46] Hickey PC, Swift SR, Roca M, Read ND; (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Method Microbiol 34, 63–87. DOI:10.1016/S0580-9517(04)34003-1.
  • [47] Żółtowska-Aksamitowska S, Shaala LA, Youssef DTA, Elhady SS, Tsurkan MV, Petrenko I, Wysokowski M, Tabachnick K, Meissner H, Ivanenko VN, Bechmann N, Joseph Y, Jesionowski T, Ehrlich H; (2018) First report on chitin in a non-verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16(2), 1–17. DOI:10.3390/md16020068.
  • [48] Ehrlich H (2010). Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52, 661-699 DOI:10.1080/00206811003679521
  • [49] Soria AC, Ruiz-Aceituno L, Ramos L, Sanz LM; (2014) Microwave-assisted extraction of polysaccharides, In: Ramawat K, Mérillon JM, (Eds.), Polysaccharides. Springer, Cham.
  • [50] Maciel JV, Knorr CL, Flores EM, Müller EI, Mesko MF, Primel EG, Duarte FA (2014) Feasibility of microwave-induced combustion for trace element determination in Engraulis anchoita by ICP-MS. Food Chem 145, 927-931. DOI:10.1016/j.foodchem.2013.08.119.
  • [51] Pnistion QP, Johnson EL; (1979) Process for activating chitin by microwave treatment and improved activated chitin product., United States Patent no. 4 159 932.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-3a9940c5-2b9b-4a29-beb6-d876a64d45ff
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.