Preferences help
enabled [disable] Abstract
Number of results
2016 | 19 | 2 | 63-68
Article title

Mechanizmy infekcji patogenami przenoszonymi przez kleszcze na przykładzie bakterii: Anaplasma phagocytophilum i Borrelia burgdorferi

Title variants
Mechanisms of infection by pathogens transmitted by ticks on the example of bacteria: Anaplasma phagocytophilum and Borrelia burgdorferi
Languages of publication
Tick-borne diseases are transmission diseases belonging to the group of zoonoses but carried by ticks. These diseases are a major public health problem but also a problem for groups occupationally exposed to tick bites. Ixodes ricinus is a species of ticks which is the most common reservoir and the vector of a large number of microorganisms pathogenic to humans. It transfers, among others, bacteria of the species: Anaplasma phagocytophilum and Borrelia burgdorferi. The article discusses the mechanisms of infection with Borrelia burgdorferi and Anaplasma phagocytophilum for both ticks as well as for animals and humans. The two microorganisms discussed have developed many characteristics and mechanisms of adaptation to the environment, as well as defense mechanisms against the body's immune response. Understanding the biology of ticks and the function of proteins produced by ticks and pathogenic microorganisms is the key in the development of effective treatments and prevention of Lyme disease and anaplasmosis.
Choroby odkleszczowe są chorobami transmisyjnymi, należącymi do grupy chorób odzwierzęcych, ale przenoszonych za pośrednictwem kleszczy. Choroby te stanowią ważny problem zarówno zdrowia publicznego, ale także problem dla grup zawodowo narażonych na ukłucia kleszczy. Ixodes ricinus jest gatunkiem kleszcza, który jest najczęstszym rezerwuarem i wektorem licznych mikroorganizmów wywołujących choroby ludzi. Przenosi on między innymi bakterie z gatunków: Anaplasma phagocytophilum i Borrelia burgdorferi. W artykule zostały omówione mechanizmy infekcji Borrelia burgdorferi i Anaplasma phagocytophilum zarówno kleszcza, ale także zwierząt i ludzi. Obydwa omawiane mikroorganizmy wykształciły wiele cech i mechanizmów przystosowawczych do środowiska, a także mechanizmów obronnych przed odpowiedzią immunologiczną organizmu. Poznanie biologii kleszczy, funkcji białek wytwarzanych przez kleszcze i patogenne mikroorganizmy stanowi klucz w opracowaniu skutecznych metod leczenia i profilaktyki boreliozy i anaplazmozy.

Physical description
  • Zakład Fizyko-Chemicznych Zagrożeń Zdrowotnych i Ekologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublini,
  • Zakład Fizyko-Chemicznych Zagrożeń Zdrowotnych i Ekologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublini
  • Zakład Fizyko-Chemicznych Zagrożeń Zdrowotnych i Ekologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublini
  • Zakład Fizyko-Chemicznych Zagrożeń Zdrowotnych i Ekologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublini
  • Zakład Fizyko-Chemicznych Zagrożeń Zdrowotnych i Ekologii, Instytut Medycyny Wsi im. Witolda Chodźki w Lublini
  • nstytut Ochrony Środowiska – Państwowy Instytut Badawczy w Warszawie
  • [1] Bakken J.S., Dumler J.S.: Human granulocytic ehrlichiosis. Clin Infect Dis 2000; 31: 554–560.
  • [2] Wang G., van Dam A.P., Schwartz I. i wsp.: Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin. Microbiol. 1999; 12(4): 633–653.
  • [3] Ohashi, N., Inayoshi M., Kitamura K. i wsp.: Anaplasma phagocytophilum-infected ticks, Japan. Emerg. Infect. Dis. 2005; 11: 1780–1783.
  • [4] Stańczak J., Kubica-Biernat B., Racewicz M., et al.: Detection of three genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in different regions of Poland. Int. J. Med. Microbial 2000; 290: 559-566.
  • [5] Skarpéđinsson S., Sogaard P., Pedersen C.: Seroprevalence of human granulocytic ehrlichiosis in high-risk groups in Denmark. Scand J Infect Dis 2001; 33: 206–210.
  • [6] Katavolos P., Armstrong P.M., Dawson J.E. i wsp.: Duration of tick attachment for transmission of granulocytic ehrlichiosis. J Infect Dis 1998; 177: 1422–1425.
  • [7] Carlyon J.A., Fikrig E.: Invasion and survival strategies of Anaplasma phagocytophilum. Cell Microbiol. 2003; 5(11): 743-754.
  • [8] Steere A. C., Coburn J., Glickstein L.: The emergence of Lyme disease. J. Clin. Invest. 2004; 113: 1093–1101.
  • [9] Steere A.C.: Lyme disease. N. Engl. J. Med. 2001; 345: 115–125.
  • [10] Wodecka B., Skotarczak B.: First isolation of Borrelia lusitaniae DNA from Ixodes ricinus ticks in Poland. Scandinavian Journal of Infectious Diseases. 2005; 37(1): 27-34.
  • [11] Volker Fingerle V., Schulte-Spechtel UC., Ruzic-Sabljic E., et al.: Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. International Journal of Medical Microbiology. 2008; 298(3-4): 279–290.
  • [12] Ogden N.H., Woldehiwet Z., Hart C.A.: Granulocytic ehrlichiosis: an emerging or rediscovered tick-borne disease? J Med Microbiol 1998; 47: 475–482.
  • [13] Grant A.C., Hunter S., Partin C.W.: A case of acute monocytic ehrlichiosis with prominent neurologic signs. Neurology 1997; 48: 1619–1623.
  • [14] Klein M.B., Hu S., Chao C.C. i wsp.: The agent of human granulocytic ehrlichiosis induces the production of myelosuppressing chemokines without induction of proinflammatory cytokines. J Infect Dis 2000; 182: 200–205.
  • [15] Sultana, H., Neelakanta G., Kantor F.S. i wsp.: Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 2010; 207: 1727–1743.
  • [16] Pedra, J.H., Narasimhan S., Rendić D. I wsp.: Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell. Microbiol. 2010; 12: 1222–1234.
  • [17] Neelakanta, G., Sultana H., Fish D. i wsp.: Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 2010; 120: 3179–3190.
  • [18] Fikrig, E., Narasimhan S.: Borrelia burgdorferi—traveling incognito? Microbes Infect. 2006; 8: 1390–1399.
  • [19] Marchal C., Schramm F., Kern A. i wsp.: Antialarmin Effect of Tick Saliva during the Transmission of Lyme Disease. Infection and Immunity, 2011; 79(2): 774–785.
  • [20] Kraiczy P., Skerka C., Kirschfink M. i wsp.: Immune evasion of Borrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and Factor H. Eur. J. Immunol. 2001; 31: 1674–1684.
  • [21] Hellwage J., Meri T., Heikkilä T. i wsp.: The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J. Biol. Chem. 2001; 276: 8427–8435.
  • [22] Alitalo A., Meri T., Lankinen H. i wsp.: Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J. Immunol. 2002; 169: 3847–3853.
  • [23] Grosskinsky S., Schott M., Brenner C., i wsp.: Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity. PLoS ONE 2009; 4(3): e4858.
  • [24] Walport M.J.: Complement–first of two parts. N. Engl. J. Med. 2001; 344: 1058–1066.
  • [25] McDowell J.V., Tran E., Hamilton D., i wsp.: Analysis of the ability of spirochete species associated with relapsing fever, avian borreliosis, and epizootic bovine abortion to bind factor H and cleave c3b. J. Clin. Microbiol. 2003; 41: 3905–3910.
  • [26] Rogers E.A., Abdunnur S.V., McDowell J.V. i wsp.: Comparative analysis of the properties and ligand binding characteristics of cspz, a factor h binding protein, derived from Borrelia burgdorferi isolates of human origin. Infection and Immunity, 2009; 77(10): 4396–4405.
  • [27] Liang F.T., Nelson F.K., Fikrig E.: Molecular adaptation of Borrelia burgdorferi in the murine host. J. Exp. Med. 2002; 196: 275–280.
  • [28] Anguita J., Thomas V., Samanta S. i wsp.: Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. J. Immunol. 2001; 167: 3383–3390.
  • [29] Narasimhan S., Caimano M.J., Liang F.T. i wsp.: Borrelia burgdorferi transcriptome in the central nervous system of non-human primates. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 15953–15958.
  • [30] Pal U., Li X., Wang T. i wsp.: TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004; 119: 457–468.
  • [31] Grimm D., Tilly K., Byram R. i wsp.: Outer-surface proteinC of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3142–3147.
  • [32] Garg R., Juncadella I.J., Ramamoorthi N., i wsp.: Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J. Immunol. 2006; 177: 6579–6583.
  • [33] Ramamoorthi N., Narasimhan S., Pal U. i wsp.: The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 2005; 436: 573–577.
  • [34] Hovius J.W., Ramamoorthi N., Veer C.V. i wsp.: Identification of Salp15 homologues in Ixodes ricinus ticks. Vector Borne Zoonotic Dis 2007; 7: 296–303.
  • [35] Hovius J.W., Schuijt T.J., de Groot K.A. i wsp.: Preferential Protection of Borrelia burgdorferi Sensu Stricto by a Salp15 Homologue in Ixodes ricinus Saliva. The Journal of Infectious Diseases, 2008; 198: 1-9.
  • [36] Hovius J.W., van Dam A.P., Fikrig E.: Tick–host–pathogen interactions in Lyme borreliosis. TRENDS in Parasitology 2007; 23(9): 434-438.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.