PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 65 | 20-36
Article title

GcMAF: a polemic or a highly promising molecule?

Content
Title variants
Languages of publication
EN
Abstracts
EN
Vitamin D Binding Protein (DBP) is a multifunctional protein which main role is to carry vitamin D and its metabolites, but it also acts as an actin scavenger and is the precursor of the macrophage activating factor molecule (GcMAF), which has reported highly promising results against cancer, HIV, and neurological disorders including autism, Alzheimer disease, Chronic Fatigue Syndrome (CFS), among others. DBP leads to the formation of GcMAF due to the loss of the O-glycosylated oligosaccharide moiety of the peptide by glycohydrolysis mediated by T and B cells. Some of the current noticed diseases have got increased levels of α-N-acetylgalactosaminidase (Nagalase), a molecule that deglycosylates DBP so it cannot drive to GcMAF, leading to immunosuppression. In this review we take a close look at the state of art strategies and trials using GcMAF as well as the controversies that have emerged during the last decade with this ‘polemic’ molecule.
Discipline
Year
Volume
65
Pages
20-36
Physical description
References
  • [1] Malik S, Fu L, Juras DJ, et al. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit Rev Clin Lab Sci. 2013; 50(1): 1-22.
  • [2] Speeckaert MM, Speeckaert R, van Geel N, Delanghe JR. Vitamin D binding protein: a multifunctional protein of clinical importance. Adv Clin Chem. 2014; 63: 1-57.
  • [3] Speeckaert M, Huang G, Delanghe JR, Taes YEC. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta. 2006; 372(1-2): 33-42.
  • [4] Cooke NE, Haddad JG. Vitamin D binding protein (Gc-globulin). Endocr Rev. 1989; 10(3): 294-307.
  • [5] Gomme PT, Bertolini J. Therapeutic potential of vitamin D-binding protein. Trends Biotechnol. 2004; 22(7): 340-345.
  • [6] Cooke NE, David E V. Serum vitamin D-binding protein is a third member of the albumin and alpha fetoprotein gene family. J Clin Invest. 1985; 76(6): 2420-2424.
  • [7] Song YH, Naumova AK, Liebhaber SA, Cooke NE. Physical and meiotic mapping of the region of human chromosome 4q11-q13 encompassing the vitamin D binding protein DBP/Gc-globulin and albumin multigene cluster. Genome Res. 1999; 9(6): 581-587.
  • [8] Braun A, Bichlmaier R, Cleve H. Molecular analysis of the gene for the human vitamin-D-binding protein (group-specific component): allelic differences of the common genetic GC types. Hum Genet. 1992; 89(4): 401-406.
  • [9] Van Baelen H, Bouillon R, De Moor P. The heterogeneity of human Gc-globulin. J Biol Chem. 1978; 253(18): 6344-6345.
  • [10] Perga S, Giuliano Albo A, Lis K, et al. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis. PLoS One. 2015; 10(6): e0129291.
  • [11] Fu L, Borges CR, Rehder DS, et al. Characterization of additional vitamin D binding protein variants. J Steroid Biochem Mol Biol. 2016; 159: 54-59.
  • [12] Ray A, Swamy N, Ray R. Cross-talk among structural domains of human DBP upon binding 25-hydroxyvitamin D. Biochem Biophys Res Commun. 2008; 365(4): 746-750.
  • [13] Constans J, Viau M. Group-specific component: evidence for two subtypes of the Gc1 gene. Science. 1977; 198(4321): 1070-1071.
  • [14] Lauridsen AL, Vestergaard P, Nexo E. Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women. Clin Chem. 2001; 47(4): 753-756.
  • [15] Sinotte M, Diorio C, Bérubé S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr. 2009; 89(2): 634-640.
  • [16] National Cancer Institute SNP500 cancer database. National Cancer Institute. 2010. Available from: http://variantgps.nci.nih.gov/cgfseq/pages/snp500.do. [last accessed 4 Sep 2016]
  • [17] Jorde, R., Schirmer, H., Wilsgaard, T., Bøgeberg Mathiesen, E., Njølstad, I., Løchen, M.-L., … Grimnes, G. (2015). The DBP Phenotype Gc-1f/Gc-1f Is Associated with Reduced Risk of Cancer. The Tromsø Study. PloS One, 10(5), e0126359.
  • [18] Peehl, D. M., Skowronski, R. J., Leung, G. K., Wong, S. T., Stamey, T. A., & Feldman, D. (1994). Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Research, 54(3), 805-10.
  • [19] Niino, M., Fukazawa, T., Kikuchi, S., & Sasaki, H. (2008). Therapeutic potential of vitamin D for multiple sclerosis. Current Medicinal Chemistry, 15(5), 499-505.
  • [20] Rithidech, K. N., Honikel, L., Milazzo, M., Madigan, D., Troxell, R., & Krupp, L. B. (2009). Protein expression profiles in pediatric multiple sclerosis: potential biomarkers. Multiple Sclerosis (Houndmills, Basingstoke, England), 15(4), 455-64.
  • [21] Daiger, S. P., Miller, M., & Chakraborty, R. (1984). Heritability of quantitative variation at the group-specific component (Gc) locus. American Journal of Human Genetics, 36(3), 663-76.
  • [22] Palma, A. S., De Carvalho, M., Grammel, N., Pinto, S., Barata, N., Conradt, H. S., & Costa, J. (2008). Proteomic analysis of plasma from Portuguese patients with familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis : Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 9(6), 339-49.
  • [23] McGrath, J. (1999). Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophrenia Research, 40(3), 173-7.
  • [24] Saha, N., & Tsoi, W. F. (1990). Serum protein markers in Chinese schizophrenics--haptoglobin types and transferrin and group-specific component subtypes. Clinical Genetics, 37(1), 54-8.
  • [25] Constans, J., Arlet, P., Viau, M., & Bouissou, C. (1983). Unusual sialilation of the serum DBP associated with the Gc 1 allele in alcoholic cirrhosis of the liver. Clinica Chimica Acta; International Journal of Clinical Chemistry, 130(2), 219-30.
  • [26] Otterbein LR, Cosio C, Graceffa P, Dominguez R. Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system. Proc Natl Acad Sci U S A. 2002; 99(12): 8003-8008.
  • [27] Haddad JG, Hu YZ, Kowalski MA, et al. Identification of the sterol- and actin-binding domains of plasma vitamin D binding protein (Gc-globulin). Biochemistry. 1992; 31(31): 7174-7181.
  • [28] Daiger SP, Schanfield MS, Cavalli-Sforza LL. Group-specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D. Proc Natl Acad Sci U S A. 1975; 72(6): 2076-2080.
  • [29] Verboven C, Rabijns A, De Maeyer M, Van Baelen H, Bouillon R, De Ranter C. A structural basis for the unique binding features of the human vitamin D-binding protein. Nat Struct Biol. 2002; 9(2): 131-136.
  • [30] Bouillon R, Van Baelen H, Rombauts W, De Moor P. The purification and characterisation of the human-serum binding protein for the 25-hydroxycholecalciferol (transcalciferin). Identity with group-specific component. Eur J Biochem. 1976; 66(2): 285-291.
  • [31] Zhang J, Habiel DM, Ramadass M, Kew RR. Identification of two distinct cell binding sequences in the vitamin D binding protein. Biochim Biophys Acta. 2010; 1803(5): 623-629.
  • [32] Kew RR, Webster RO. Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J Clin Invest. 1988; 82(1): 364-369.
  • [33] DiMartino SJ, Trujillo G, McVoy LA, Zhang J, Kew RR. Upregulation of vitamin D binding protein (Gc-globulin) binding sites during neutrophil activation from a latent reservoir in azurophil granules. Mol Immunol. 2007; 44(9): 2370-2377.
  • [34] Yamamoto N, Homma S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc Natl Acad Sci U S A. 1991; 88(19): 8539-8543.
  • [35] Yamamoto N, Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. J Immunol. 1993; 151(5): 2794-2802.
  • [36] Viau, M., Constans, J., Debray, H., & Montreuil, J. (1983). Isolation and characterization of the O-glycan chain of the human vitamin-D binding protein. Biochemical and Biophysical Research Communications, 117(1), 324-31.
  • [37] Borges, C. R., Jarvis, J. W., Oran, P. E., & Nelson, R. W. (2008). Population studies of Vitamin D Binding Protein microheterogeneity by mass spectrometry lead to characterization of its genotype-dependent O-glycosylation patterns. Journal of Proteome Research, 7(9), 4143-53.
  • [38] Borges, C. R., Jarvis, J. W., Oran, P. E., Rogers, S. P., & Nelson, R. W. (2008). Population studies of intact vitamin D binding protein by affinity capture ESI-TOF-MS. Journal of Biomolecular Techniques : JBT, 19(3), 167-76.
  • [39] Rehder, D. S., Nelson, R. W., & Borges, C. R. (2009). Glycosylation status of vitamin D binding protein in cancer patients. Protein Science : A Publication of the Protein Society, 18(10), 2036-42.
  • [40] Yamamoto N, Suyama H, Yamamoto N. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF. Transl Oncol. 2008; 1(2): 65-72.
  • [41] Kisker O, Onizuka S, Becker CM, et al. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003; 5(1): 32-40.
  • [42] Yamamoto N, Suyama H, Yamamoto N, Ushijima N. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF). Int J cancer. 2008; 122(2): 461-467.
  • [43] Bellone M, Rigamonti N. Vitamin D-binding protein-derived macrophage-activating factor, GcMAF, and prostate cancer. Cancer Immunol Immunother. 2012; 61(12): 2377-2378.
  • [44] Ruggiero M, Ward E, Smith R, et al. Oleic Acid, deglycosylated vitamin D-binding protein, nitric oxide: a molecular triad made lethal to cancer. Anticancer Res. 2014; 34(7): 3569-3578.
  • [45] Hamilton G, Rath B, Klameth L, Hochmair MJ. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells. Oncoimmunology. 2016; 5(3): e1093277.
  • [46] Inui T, Amitani H, Kubo K, et al. Case Report: A Non-small Cell Lung Cancer Patient Treated with GcMAF, Sonodynamic Therapy and Tumor Treating Fields. Anticancer Res. 2016; 36(7): 3767-3770.
  • [47] Yamamoto N, Naraparaju VR, Srinivasula SM. Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients. AIDS Res Hum Retroviruses. 1995; 11(11): 1373-1378.
  • [48] Yamamoto N, Ushijima N, Koga Y. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF). J Med Virol. 2009; 81(1): 16-26.
  • [49] Jeffrey Bradstreet J, Vogelaar emar, Thyer L. Initial Observations of elevated Alpha-n-Acetylgalactosaminidase Activity Associated with Autism and Observed Reductions from GC Protein—Macrophage Activating Factor Injections. Autism Insights. 2012; 4: 31-384.
  • [50] Siniscalco D, Bradstreet JJ, Cirillo A, Antonucci N. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation. 2014; 11:78.
  • [51] Jeffrey Bradstreet J, Vogelaar emar, Thyer L. Initial Observations of elevated Alpha-n-Acetylgalactosaminidase Activity Associated with Autism and Observed Reductions from GC Protein—Macrophage Activating Factor Injections. Autism Insights. 2012; 4: 31-384.
  • [52] Thyer L, Ward E, Smith R, et al. Therapeutic effects of highly purified DE-glycosalated GCMAF in the Immunotherapy of patients with chronic diseases. Am J Immunol Publ Online. 2013; 9(93): 78-84.
  • [53] Stüve, O., & Oksenberg, J. (1993). Multiple Sclerosis Overview. Gene Reviews ®. University of Washington, Seattle.
  • [54] 56. Morucci G, Fiore MG, Magherini S, et al. Vitamin D binding protein-derived macrophage activating factor stimulates proliferation and signalling in a human neuronal cell line. Ital J Anat Embryol. 2013; 118(2): 143.
  • [55] Shechter R, Schwartz M. Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer “if” but “how”. J Pathol. 2013; 229(2): 332-346.
  • [56] Perry, R. T., Collins, J. S., Wiener, H., Acton, R., & Go, R. C. (n.d.). The role of TNF and its receptors in Alzheimer’s disease. Neurobiology of Aging, 22(6), 873-83.
  • [57] Tobinick, E., Gross, H., Weinberger, A., & Cohen, H. (2006). TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed : Medscape General Medicine, 8(2), 25.
  • [58] GcMAF.se Official webpage - Boost Immune System | Destroy Cancer. (n.d.). Retrieved from https://gcmaf.eu/. Last time consulted: 6th September 2016
  • [59] Smith R, Thyer L, Ward E, et al. Effects of GC-Macrophage activating factor in human neurons: implications for treatment of chronic fatigue syndrome. Am J Immunol. 2013; 9(4): 120-129.
  • [60] Inui T, Kubo K, Kuchiike D, et al. Oral Colostrum Macrophage-activating Factor for Serious Infection and Chronic Fatigue Syndrome: Three Case Reports. Anticancer Res. 2015; 35(8): 4545-4549.
  • [61] Ugarte A, Bouche G, Meheus L. Inconsistencies and questionable reliability of the publication; Immunotherapy of metastatic colorectal cancer with vitamin D binding protein derived macrophages activating, GcMAF " by Yamamoto et al. Cancer Immunol Immunother.
  • [62] Regulator warns against GcMAF made in unlicensed facility in Cambridgeshire - Press releases - GOV.UK. (n.d.). Retrieved from https://www.gov.uk/government/news/regulator-warns-against-gcmaf-made-in-unlicensed-facility-in-cambridgeshire. Las time consulted: 6th, September 2016
  • [63] Retraction. (2014). International Journal of Cancer, 135(6), 1509-1509.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-39c34750-8e98-4147-b419-7c16efa50262
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.