PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 154 | 117-132
Article title

Interval valued Fermatean fuzzy interior (bi) Γ – hyperideals in Γ – hypersemigroups

Content
Title variants
Languages of publication
EN
Abstracts
EN
Interval valued Fermatean fuzzy set is an exyension of Fermatean fuzzy set. It is a combination of interval valued fuzzy set and Fermatean fuzzy set. In this paper we propose the notion of interval valued Fermatean fuzzy et. It is a pair of intevral numbers such that the sum of the ccubic of the upper bounds should be less than or equal to one. Some basic properties based on interval valued Feramtean fuzzy set is studied. We introduce the concept of interval valued Feramtean fuzzy Γ - subsemihypergroup, interval valued Feramtean fuzzy (bi, interior) Γ - hypersemigroup. Relation between these Γ - hyperideals are also discussed with suitable examples. Finally the inverse image of an interval valued Feramtean fuzzy set is established and also proved that the inverse image of an interval valued Feramtean fuzzy (bi, interior) Γ - hyperideal is also an interval valued Feramtean fuzzy (bi, interior) Γ - hyperideal.
Year
Volume
154
Pages
117-132
Physical description
Contributors
author
  • Department of Mathematics, Dharmapuram Gnanambigai Govt. Arts College (W), Mailaduthurai, Tamil Nadu, India
author
  • Department of Mathematics, Annamalai University, Chidambaram, Tamil Nadu, India
References
  • K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31 (1989) 343-349
  • S. M. Anvariyeh, S. Miravakili and B. Davvaz. On Γ-hyperideals in Γ – hypersemigroups. Carpathian Journal of Mathematics, 26(1) (2010) 11-23
  • Basar and M. Y. Abbasi. On ordered bi-Γ-ideals in ordered Γ-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20(3) (2017) 645-652
  • Davvaz, Fuzzy hyperideals in semihypergroups. Italian Journal of Pure and Applied Mathematics, 8 (2000) 67-74
  • Hong, S. M. Jun, Y. B. and Meng, Fuzzy interior ideals in semigroups. Indian J. Pure Appl. Math. 26(9) (1995) 859-863
  • N. kuroki, On Fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy Sets and Systems, 5 (1981) 203-215
  • S. V. Manemaran and R. Nagarajan, Novel Cubic Fermatean Fuzzy Soft Ideal Structures. International Journal of Innovative Technology and Exploring Engineering 9(2), (2019) 4915-4920. DOI: 10.35940/ijitee.D9929.129219
  • Pibaljommee and B. Davvaz, Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups. Journal of Intelligent and Fuzzy Systems, 28(5) (2015) 2141-2148
  • T. Senapati and R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica, 30(2) (2019) 391-412
  • Senapati, T., Yager, R.R. Fermatean fuzzy sets. J Ambient Intell Human Comput 11, 663–674 (2020). https://doi.org/10.1007/s12652-019-01377-0
  • T. Senapati and R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Engineering Applications of Artificial Intelligence, 85 (2019) 112-121
  • Somsak Lekkoksung, Nareupanat Lekkoksung. On interval valued intuitionistic fuzzy hyperideals of ordered semihypergroups. Korean J. Math. Vol 28, No 4 (2020) pp.753-774. DOI: https://doi.org/10.11568/kjm.2020.28.4.753
  • S. K. Sardar and S. K. Majumder, On Fuzzy Ideals in Γ-Semigroups. International Journal of Algebra, 3(16) (2009) 775-784
  • S. K. Sardar and S. K. Majumder. A study on fuzzy interior ideals in Γ-semigroups. Computers and Mathematics with Applications, 60(1) (2010), 90-94.
  • V. S. Subha and S. Sharmila, A characterization of semihypergroups in terms of cubic interior hyperideals. Bulletin of the International Mathematical Virtual Institute, 11(2) (2021) 307-317
  • V. S. Subha, N. Thillaigovindan and S. Sharmila, Fuzzy rough prime and semi-prime ideals in semigroups. AIP Conference Proceedings, 2177, 020093 (2019)
  • V. S. Subha and S. Sharmila, A short note on some of the fuzzy rough hyper-ideals in semihyper-groups. Malaya Journal of Matematik, 8(2) (2020) 522-526
  • Shahzadi G, Akram M. Hypergraphs Based on Pythagorean Fuzzy Soft Model. Mathematical and Computational Applications 2019, 24(4): 100. https://doi.org/10.3390/mca24040100
  • N. Yaqoob and S. Haq, Generalized Rough Γ-Hyperideals in Γ-Semihypergroups. Journal of Applied Mathematics, Volume 2014, Article ID 658252, 6 pages
  • N. Yaqoob, M. Aslam and S. Haq Rough Fuzzy Hyperideals in Ternary Semihypergroup. Advances in Fuzzy Systems, Volume 2012, Article ID 595687, 9 pages
  • R. R. Yager, Pythagorean fuzzy subsets. IFSA World Congress and NAFIPS Annual Meeting IEEE (2013). 57-61.
  • L. A. Zadeh, Fuzzy sets. Information Control, 8 (1965) 338-353
  • L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I. Information Science, 8 (1975) 199-249
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-381e95bb-4835-416f-8e00-fac1106b554c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.