PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 21 | 98-117
Article title

Human microbiome diversity: implications in health, disease, and applications

Content
Title variants
Languages of publication
EN
Abstracts
EN
The human microbiome is a complex collection of microorganisms, including their genes and the metabolites colonizing the human body, and playing various functions in health and disease. The arrival of culture-independent molecular techniques such as metagenomics, transcriptomics, proteomics, and metabolomics have removed the limitations imposed by culture-dependent techniques. These advanced techniques have also brought about some paradigm shifts in what is known about the structural and functional diversities of the human microbiome in health and disease. The dynamics of the human microbiome is implicated in a number of human gastrointestinal and non-gastrointestinal diseases. This makes it a contemporary issue in biological and medical sciences. Of interest, some applications have already emerged for the human microbiome. These include being the source of antimicrobial substances, faecal microbiome therapy, probiotics, prebiotics and phage therapy. Given that a number of factors can alter the host microbiome - such as environment, lifestyle, stage of life, occupation, mode of delivery, therapy and so on, there is a need for more human microbiome projects that will help to capture these diversities in various continents. Furthermore, for the full impact of the various applications (both potentials and current) of human microbiome to be felt, there is need for more studies that will fully elucidate their physiology in humans.
Discipline
Year
Volume
21
Pages
98-117
Physical description
Contributors
author
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Department of Medical Laboratory Science, Faculty of health Sciences, Taraba State University, Tabara, Nigeria
author
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Microbiology Department, Cross River State University of Science and Technology, Calabar, Nigeria
author
  • Microbiology Department, Cross River State University of Science and Technology, Calabar, Nigeria
References
  • [1] Foo, J. L., Ling, H., Lee Y. S. & Chang, M. W. (2017). Microbiome engineering: Current applications and its future. Biotechnology Journal, 12(3). DOI 10.1002/biot.201600099
  • [2] Llodys-Price, J., Abu-Ali G. & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine, 8(51). Doi.org/10.1186/s13073-016-0307-y
  • [3] Sun, J. & Chnag, E. B. (2014). Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis., 1(2), 132-139. Doi:10.1016/j.gendis.2014.08.001
  • [4] D’Argenio, V. & Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clin Chim Acta, 451(Pt A), 97-102. doi: 10.1016/j.cca.2015.01.003
  • [5] Hoffmann, A. R., Proctor, L. M., Surette, M. G. & Suchodolski, J. S. (2016). The Microbiome: The Trillions of Microorganisms That Maintain Health and Cause Disease in Humans and Companion Animals. Veterinary Pathology, 53(1), 10-21.
  • [6] Collins, J., Borojevic, R., Verdu, E. F., Huizinga, J. D., and Ratcliffe, E. M. (2014). Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol. Motil. 26, 98–107. doi: 10.1111/nmo.12236
  • [7] Kar, S. K. (2016). The Human Microbiome Concept of Disease Prevention and Treatment: A Giant Leap in Medical Genetics. Hereditary Genet 5:e114. doi:10.4172/2161-1041.1000e114
  • [8] Blum, H. E. (2017). The human microbiome. Adv Med Sci. 62(2), 414-420. Doi: 10.1016/j.advms.2017.04.005
  • [9] Mathieu, A., Delmont, T. O., Vogel, T. M., Robe, P., Nalin, R., Nalin, R. & Simonet, P. (2013) Life on Human Surfaces: Skin Metagenomics. PLoS ONE, 8(6), e65288. Doi:10.1371/journal.pone.0065288
  • [10] Cho, I. & Blaser, M. J. (2012). The human microbiome: at the interface of health and disease. Nat Rev Genet. 13(4), 260–270. Doi:10.1038/nrg3182
  • [11] Grice, E. A. (2014). The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg. 33(2), 98–103.
  • [12] Edet, U. O., Antai, S. P., Brooks, A.A. & Asitok, A. D. (2017). An Overview of Cultural of Molecular and Metagenomics Techniques in Description of Microbial Diversity. Journal of Advances in Microbiology, 7(2), 1-19.
  • [13] Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 68(4), 669-85.
  • [14] Cenit, M. C., Matzaraki, V., Tigchelaar, E. F., Zhernakova, A. (2014). Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta 1842(10), 1981-1992. doi: 10.1016/j.bbadis.2014.05.023
  • [15] Amann, R. I. (1995). Fluorescently labelled, rRNA‐targeted oligonucleotide probes in the study of microbial ecology. Molecular Ecology, 4(5). Doi.org/10.1111/j.1365-294X.1995.tb00255.x
  • [16] Rastogi, G. & Sani, R. K. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment. Microbes and Microbial Technology, 1, 29–57.
  • [17] Garcia-Garcera, M., Garcia-Etxebarria, K., Coscolla, M., Latorre, A. & Calafell, F. (2013). (2013). A New Method for Extracting Skin Microbes Allows Metagenomic Analysis of Whole-Deep Skin. PLoS One, 8(9), e74914. Doi: 10.1371/journal.pone.0074914
  • [18] Al-Asmakh, M. & Zadjali, F. (2015). Use of Germ-Free Animal Models in Microbiota-Related Research. Journal of Microbiology Biuotechnology 25(10), 1583-1588. http://dx.doi.org/10.4014/jmb.1501.01039
  • [19] Kanehisa, M., Sato, Y. & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology 2016, 726-731.
  • [20] Edet, U. O., Antai, S. P., Brooks, A. A., & Asitok, A. D. (2017). Metagenomic Assessment of Antibiotics Resistance Genes from Four Ecosystems in the Niger Delta Area of Nigeria. Asian Journal of Biotechnology and Genetic Engineering 1(1):1-10
  • [21] Edet, U. O., & Antai, S. P. (2018). Correlation and Distribution of Xenobiotics Genes and Metabolic Activities with level of Total petroleum hydrocarbon in soil, sediment, and estuary water in the Niger Delta. Asian Journal of Biotechnology and Genetic Engineering 1(1): 1-11
  • [22] Udofia, U. U., Edet, U. O., & Antai, S. P. (2018). Potential Benefits of applying “Omics” Technology in cleaning up crude oil spillages in the Niger Delta Region of Nigeria. Journal of Advances 15(2):1-8.
  • [23] Kim, B-S., Jeon, Y-S. & Chun, J. (2013). Current Status and Future Promise of the Human Microbiome. Pediatr Gastroenterol Hepatol Nutr. 16(2), 71-79. doi.org/10.5223/pghn.2013.16.2.71
  • [24] Erickson, A R., Cantarel, B. L., Lamendella, R., Darzi, Y., Mongodin E. F., Pan, C., Shah, M., Halfvarson, J., Tysk, C., Henrissat, B., Raes, J., Verberkmoes, N. C., Fraser, C M., Hettich, R. L. & Jansson, J. K. (2012). Integrated Metagenomics/Metaproteomics Reveals Human Host- Microbiota Signatures of Crohn's Disease. Plos One 7(11): e49138. Doi.org/10.1371/journal.pone.0049138
  • [25] Perez-Munoz, Arrieta, MC, Ramer-Tait, A. E. & Walter, J. (2017). A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome, 5, 48. DOI 10.1186/s40168-017-0268-4
  • [26] Bull, M. J. & Plummer, N. T. (2014). Part 1: The Human Gut Microbiome in Health and Disease. Integr Med (Encinitas), 13(6), 17–22.
  • [27] Guarner, F. & Malagelada, J. R. (2003). Gut flora in health and disease. Lancet, 361, 512-519.
  • [28] Blum, H. E. (2017). The Intestinal Microbial Community and Inflammatory Bowel Diseases. Journal of Infectious Diseases and Epidemiology, 3(1), 025. Doi:org/10.23937/2474- 3658/1510025
  • [29] Walker, A W., Martin, J. C., Scott, P., Parkhill, J., Flint, H J. & Scott, K P. (2015). 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome, 3, 26. Doi: 10.1186/s40168-015-0087-4
  • [30] The Human Microbiome Consortium (2012) Structure, Function and Diversity of Human Microbiome in an Adult Reference Population. Nature. Doi:10.1038/Nature11234
  • [31] Qin, J., Li, R., Raes, J., Arumugan, M., Burgdorf, K. S., Manichanh, C., et al Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59– 65.
  • [32] Grice, E. A. & Segre, J. A. (2011). The skin microbiome. Nat Rev Microbiol., 9(4), 244–253. doi:10.1038/nrmicro2537
  • [33] Grice, E. A. (2014). The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg. 33(2), 98–103.
  • [34] Cosseau, C., Romano-Betrand, S., Duplan, H., Lucas, O., Ingrassia, I., Pigasse, C., Roques, C. & Jumas-Bilak, E. (2016). Proteobacteria from the human skin microbiota: Species-level diversity and hypotheses. One Health, 2, 33-41.
  • [35] Gupta, V. K., Paul, S. & Dutta, C. (2017). Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in Microbiology, 8, 1162.
  • [36] Hospodsky, D., Pickering, A. J., Julian, T. R., Miller, D., Gorthala, S., Boehm, A. B. & Peccia, J. (2014). Hand bacterial communities vary across two different human populations. Microbiology, 160, 1144–1152.
  • [37] Capone, K A., Dowd, S. E. & Stamatas, J. A. (2011). Diversity of the Human Skin Microbiome Early in Life. J. Invest Dermatol. 131(10), 2026–2032.
  • [38] Hannigan, G. D. & Grice, E. A. (2013). Microbial Ecology of the Skin in the Era of Metagenomics and Molecular Microbiology. Cold Spring Harb Perspect Med. 3(12), a015362.
  • [39] Bäckhed, F., Fraser, C. M., Ringel, Y., Sanders, M. E., Sartor, R. B., Sherman, P. M., Versalovic, J., Young, V. & Finlay, B. B. (2012). Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe, 12(5), 611-22.
  • [40] Palmer, C., Bik, E. M., DiGuilio, D. B., Relman, D. R. & Brown, P O. (2007). Development of the human infant intestinal microbiota. PLoS Biol. 5(7), e177. Doi:10.1371/journal.pbio. 0050177
  • [41] Sharon, G., Garg, N., Debelius, J., Knight, R., Dorrestein, P. C. & Mazmanian, S. K. (2014). Cell Metab. 20(5), 719–730. Doi:10.1016/j.cmet.2014.10.016
  • [42] Saraswati, S. & Sitaraman, R. (2014). Aging and the human gut microbiota—from correlation to causality. Front Microbiol. 5,764. Doi: 10.3389/fmicb.2014.00764
  • [43] Abubucker, S., Segata, N., Goll, J., Schubert, A. M., Izard, J., Cantarel, B L., Rodriguez-Mueller, B., Zucker, J., Thiagarajan, M., Henrissat, B., White, O., Kelley, S. T., Methe, B., Schloss, P. D., Gevers, D., Mitreva, M. & Huttenhower, C. (2012). Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome. PLoS Comput Biol. 8(6), e1002358
  • [44] Li Y, Ismail AI, Ge Y, Tellez M, Sohn W. Similarity of bacterial populations in saliva from African-American mother-child dyads. Journal of Clinical Microbiology, 45, 3082–3085.
  • [45] Anukam, K. (2017). Effects of Ampicillin on the Gut Microbiome of an Adult Male as Determined by 16S rRNA V4 Metagenomics Sequencing and Greengenes Bioinformatics Suite. Journal of Advances in Microbiology, 7, 2456-7116.
  • [46] Panda, S., Khader, I. E., Casellas, F., Vivancos, J. L., Cors, M G., Santiago, A., Cuenca, S., Guarner, F. & Manichanh, C. (2014). Short-Term Effect of Antibiotics on Human Gut Microbiota. PLoS One, 9(4), e95476.
  • [47] Charlson, E. S., Chen, J., CUsters-Allen, R., Bittinger, K., Li, H., Sinha, R., Hwang, J., Bushman, D. & Collman, R G. (2010). Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette Smokers. PLoS One, 5(12), e15216. Doi: 10.1371/journal.pone.0015216
  • [48] Beirao, E. M., Padovan, A. C. B., Furtado, J. J. D., Colombo, A L. & Medeiros, E. A. S. (2014). Does the change on gastrointestinal tract microbiome affects host? The Brazilian Journal of Infectious Diseases 18(6), 660–663.
  • [49] Hollister, E. B., Riehle, K., Luna, R. A., Weidler, E. M., Rubio-Gonzales, M., Mistretta, T. A., Raza, S., Dodddapaneni, H. V., Metcalf, G. A., Muzny, D. M., Gibbs, R. A., Petrosino, J. F>, Shulman, R. J. & Versalovic, J. (2015). Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome, 3, 36. DOI 10.1186/s40168-015-0101-x
  • [50] Kostic, A. D., Xavier, R. J. & Gever, D. (2014). The Microbiome in Inflammatory Bowel Diseases: Current Status and the Future Ahead. Gastroenterology, 146(6), 1489–1499. Doi: 10.1053/j.gastro.2014.02.009
  • [51] Findley, K., William, D. R., Grice, E A. & Bonham, V. L. (2016). Health Disparities and the Microbiome. Trends Microbiol. 24(11), 847–850.
  • [52] Althani, A., Marei, H. E., Hamdi, W. S., Nasrallah, G., El Zowalaty, M., Al Khdor, S., Al- Asmakh, M., Aziz, H., Cenciarelli, C. (2015). Human Microbiome and Its Association with Health and Diseases. Journal of Cellular Physiology, 231(8). DOI: 10.1002/jcp.25284
  • [53] Belstrom, D., Constancias, F., Liu, Y., Drautz, D. I., Schuster, S. C., Kohli, G. S., Jakobsen, T. M., Holmstrup, P. & Givskov, M. (2017). Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. Biofilms and Microbiomes, 3, 23. Doi:10.1038/s41522-017-0031-4
  • [54] Cading, S., Verbeke, K., Vipond, D T., Corfe, B. M. & Owen, L J. (2015). Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 26, Doi: 10.3402/mehd.v26.26191
  • [55] Sartor, R. B. & WU, G. D. (2017). Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology, 152(2), 327–339.e4. Doi: 10.1053/j.gastro.2016.10.012
  • [56] Cadwell, K. (2015). The virome in host health and disease. Immunity, 42(5), 805-13. Doi: 10.1016/j.immuni.2015.05.003
  • [57] Pasco, J A., Holloway, K. L., Dobbin, A. G., Kotowicz, M. A., Williams, L. J. & Brennan, S. L. (2014). Body mass index and measures of body fat for defining obesity and underweight: a cross- sectional, population-based study. BMC Obes. 1, 9. Doi: 10.1186/2052-9538-1-9.
  • [58] Seidell, J. C. & Halberstadt, J. (2015). The Global Burden of Obesity and the Challenges of Prevention. Ann Nutr Metab. 66(suppl 2), 7-12. Doi.org/10.1159/000375143
  • [59] Kane, A. V., Dinh, D. M. & Ward, H. D. (2015). Childhood Malnutrition and the Intestinal Microbiome Malnutrition and the microbiome. Pediatr Res. 77(0): 256–262. doi:10.1038/pr.2014.179
  • [60] Han, J. L. & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World Journal of Gastroenterology, 20(47): 17737-17745
  • [61] Crommen, S., & Simon, M. C. (2018). Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes, 9(1), 1-16. Doi: 10.3390/genes9010010.
  • [62] Ley, R. E. (2010). Obesity and the human microbiome. Curr Opin Gastroenterol. 26(1), 5-11. Doi: 10.1097/MOG.0b013e328333d751.
  • [63] Tarnbaugh, P J., Ley, R. E., Mahowald, M. A., Margrini, V., Mardis, E R. & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-31.
  • [64] Backhead, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F. & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 101(44), 15718-23.
  • [65] Wellen, K. E. & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. J. Clin Invest. 115, 1111–1119.
  • [66] Tsai, F. & Coyle, W. J. (2009). The Microbiome and Obesity:Is Obesity Linked to Our Gut Flora? Current Gastroenterology Reports, 11, 307–313.
  • [67] Zhu, W., Gregory, J C., Org, E., Buffa, J A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabain, M., Sartor, B. R., Mclntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J A., Brown, M., Lusis, A. J. & Hazen, S. L. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165(1), 111–124. Doi:10.1016/j.cell.2016.02.011
  • [68] Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian- Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell, 163, 1585–1595.
  • [69] Tremlett, H., Bauer, K C., Appel-Cresswell, S., Finlay, B B. & Waubant, E. (2017). The gut microbiome in human neurological disease: A review. Ann Neurol. 81(3), 369-382. Doi: 10.1002/ana.24901.
  • [70] Maes, M., Twisk, F. N., Kubera, M., Ringel, K., Leunis, J. C. & Geffard, M. (2012). Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. Journal of affective disorders, 136, 909– 917.
  • [71] Sampson, T. R. & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host Microbe, 17(5), 565-76. Doi: 10.1016/j.chom.2015.04.011
  • [72] Pihlstrom, B. L., Michalowicz, B. S. & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809–1820.
  • [73] Selwitz, R. H., Ismail, A. I. & Pitts, N. B. (2007). Dental caries. Lancet, 369, 51–59. Doi: 10.1016/S0140-6736(07)60031-2
  • [74] Kim, M-S., Park, E-J., Roh, S. W. & Bae, J-W. (2011). Diversity and Abundance of Single- Stranded DNA Viruses in Human Feces. Appl Environ Microbiol. 77(22), 8062–8070. Doi: 10.1128/AEM.06331-11.
  • [75] William, S. C. P. (2013). The other microbiome. Proc Natl Acad Sci U S A, 110(8), 2682–2684. Doi: 10.1073/pnas.1300923110
  • [76] Umego, C. F., Mboto, C. I., Mbim, E. N., Edet U. O., George, U. E., & Tarh, J. E. (2018). Epidemiology of Hepatitis B virus infection in South-South Nigeria. A Review. International STD Research and Reviews, 7(1), 1-17.
  • [77] Handley, S., Thackray, L. B., Zhao, G., Presti, R., Miller, A., Croit, L., Abbink, P., Maxfield, L. F., Kambal, A., Duan, E., Stanley, K., Krammer, J., Macri, S C., Permar, S. R., Schmitz, J. E., Mansfield, K., Brenchley, J M., Veazey, R. S., Stappenbeck, T. S., Wang, D., Barouch, D. H. & Virgin, H. W. (2012). Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 151(2): 253-66
  • [78] White, B. A., Creedon, D. J., Nelson, K E. & Wilson, B. A. (2012). The vaginal microbiome in health and disease. Trends Endocrinol Metab. 22(10), 389–393.
  • [79] Eschenbach, D. A., Thwin, S. S., patton, D. L., Hooton, T. M., Stapleton, A. E., Agnew, K., Winter, C., Meier, A. & Stamm, W. E. (2000). Influence of the normal menstrual cycle on vaginal tissue, discharge, and microflora. Clin Infect Dis. 30(6), 901-7.
  • [80] Mbim, E. N., Mboto, C. I., George, U. E., Umego, C. F., Edet, U. O. & Orajiaka, N. A. (2017). Prevalence of Vaginal Candidiasis among Female Students of a Hostel in the University of Calabar, Calabar. Journal of Applied Life Sciences International, 13 (3), 1-7.
  • [81] Edet, U. O., Mboto, C. I., Mbim, E. N., George, U. E., Umego, C. F. & Okon, J. (2017). Prevalence of Bacterial Vaginosis amongst Female Students of the University of Calabar, Calabar, Cross River State. Asian Journal of Research in Medical and Pharmaceutical, 2(2), 1-8.
  • [82] Ebana, R. U. B., Etok, C. A., &Edet U. O. (2016). Phytochemical screening and antimicrobial effect of three medicinal plants on urinary tract pathogens (2016). Asian Journal of Medicine and Health, 1(2), 1-7.
  • [83] Vasquez, A., Jakobsson, T., Ahrne, S., Forsum, U. & Molin, G. (2002). Vaginal Lactobacillus Flora of Healthy Swedish Women. J. Clin Microbiol. 40(8), 2746–2749. Doi: 10.1128/JCM.40.8.2746-2749.2002
  • [84] Falagas, M., Betsi, G. I. & Athanasiou, S. (2007). Probiotics for the treatment of women with bacterial vaginosis. Clin Microbiol Infect. 13(7), 657-64.
  • [85] Siegel, R L., Miller, K D. & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin. 66(1), 7-30. doi: 10.3322/caac.21332
  • [86] Torre, L A., Bray, F., Siegel, R L., Ferlay, J., Lortet-Tieulent, J. & Jemal, A. (2015). Cancer statistics, 2012. CA Cancer J Clin. 65(2), 87-108. doi: 10.3322/caac.21262.
  • [87] IARC (2009). (International Agency for Research on Cancer) A review of human carcinogens. Part B: biological agent. IARC, Lyon, IARC.
  • [88] Bhatt, A. P., Redinbo, M R. & Bultman, S. J. (2017). The Role of the Microbiome in Cancer Development and Therapy. CA Cancer Journal Clinical, 67, 326-344.
  • [89] Zackular, J P., Rogers, M. A. A. M., Ruffin, M T., Schloss, P D. (2014). The Human Gut Microbiome as a Screening Tool for Colorectal Cancer. Cancer Prev Res (Phila) 7(11), 1112– 1121. Doi: 10.1158/1940-6207.CAPR-14-0129
  • [90] Goedert, J. J., Gong, Y., Hua, X., Zhong, H., He, Y., Peng, P., Yu, G., Wang, W., Ravel, J., Shi, J. & Zheng, Y. (2015a). Fecal microbiota characteristics of patients with colorectal adenoma detected by screening: a population-based study. EBioMedicine, 2(6), 597–603.
  • [91] McCoy, A. N., Araujo-Perez, F., Azca´rate-Peril, A., Yeh, J. J., Sandler, R. S. & Keku, T. O. (2013) Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE 8(1): e53653. doi:10.1371/journal.pone.0053653
  • [92] Arthur, J. C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J. M., Fan, T. J., Campbell, B. J., Abujamel, T, Dogan, B., Rogers, A. B. et al. (2012). Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science, 338, 120–123.
  • [93] Xiong, Z. Q. (2016) The Human Microbiome as a New Source for Antibiotic Discovery. Clin Microbiol. 5, e137. Doi: 10.4172/2327-5073.1000e137
  • [94] Kommineni S, Bretl DJ, Lam V, eChakraborty, R., Hayward, M., Simpson, P., Cao, Y., Bousounis, P., Kristich, C. J. & Salzman, N. H. (2015). Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015;526(7575):719– 22. 10.1038/nature15524
  • [95] Donia, M. S., Cimermancic, P., Schulze, C J., Brown, L. C. W., Martin, J., Mitreva, M., Clardy, J., Linington, R. G. & Fischbach, M A. (2014). A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 158(6), 1402– 1414. Doi: 10.1016/j.cell.2014.08.032
  • [96] van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., Robert, C., Oztas, S., Mangenot, S., Couloux, A., Loux, V., Dervyn, R., Bossy, R., Bolotin, A., Batto, J. M., Walunas, T., Gibrat, J. F., Bessieres, P., Weissenbach, J., Ehrlich, S. D. & Maguin, E. (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing evolution. Proc Natl Acad Sci U S A. 13, 103(24), 9274-9.
  • [97] Jones, M. L., Martoni, C. J., Parent, M. & Prakash, S. (2012a). Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yogurt formulation in hypercholesterolaemic adults. Br. J. Nutr. 107(10), 1505-13.
  • [98] Lynch, S. V. & Pedersen, O. (2016). The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 375, 2369-79. DOI: 10.1056/NEJMra1600266
  • [99] Langdon, A., Crook, N. & Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39. Doi: 10.1186/s13073-016-0294-z
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-3801a412-1bed-4188-a311-f62f0daf8008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.