Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 3 | 139-146

Article title

Zmiany w populacji limfocytów Treg podczas chemioterapii u chorych na raka jajnika

Content

Title variants

EN
Changes in the Treg lymphocyte population levels in patients being treated for ovarian cancer with chemotherapy

Languages of publication

EN PL

Abstracts

EN
Regulatory T lymphocytes CD4+CD25+FOXP3+ or Treg cells play a major role in immune system surveillance and tolerance. Treg cells are critical for controlling the immunological system because they inhibit the cytotoxic response. Moreover, it has been found that Treg cell recruitment into the tumor microenvironment reduces the chances of survival in cancer patients and that an increase in Treg cells in the peripheral blood correlates with the progression of ovarian cancer. In our study we addressed Treg cell population changes in cases of ovarian cancer where the patients were treated with chemotherapy. Using flow cytometry we determined the levels of CD4+CD25+FOXP3+ lymphocytes in the peripheral blood of the patients prior to chemotherapy, after 3 courses of chemotherapy, and then after 6 courses (the respective regimens were: TK – 13, CP – 1, TPT – 1 patient). We observed that the Treg lymphocyte levels of ovarian cancer patients decreased after 3 courses of chemotherapy though the difference (p=0.3) was not statistically significant. After 6 chemotherapy courses, however, levels did increase to a statistically significant degree (p=0.02). We have therefore concluded that a measurement of the Treg cell population could be helpful in estimating the impact of chemotherapy on a patient’s host immune system during the systemic treatment of ovarian cancer.
PL
Limfocyty regulatorowe T CD4+CD25+FOXP3+ (komórki Treg) odgrywają istotną rolę w mechanizmach nadzoru i tolerancji immunologicznej, hamując odpowiedź cytotoksyczną układu odpornościowego. Wykazano, że w trakcie rozwoju choroby nowotworowej liczebność limfocytów Treg wzrasta. Obecność nacieków z limfocytów Treg w mikrośrodowisku guza wiąże się z gorszym rokowaniem, a wzrost populacji komórek Treg we krwi obwodowej koreluje z progresją raka jajnika. W niniejszym badaniu sprawdzano wpływ chemioterapii stosowanej u chorych z rakiem jajnika na liczebność populacji Treg we krwi obwodowej. W tym celu odsetek Treg we krwi oznaczano przed, po 3 oraz po 6 kursach chemioterapii (TK – 13, CP – 1, TPT – 1 chora) za pomocą cytometrii przepływowej. Podczas pierwszych 3 cykli chemioterapii zaobserwowano początkowe zmniejszenie odsetka limfocytów T CD4+CD25+ FOXP3+ wśród limfocytów T CD4+, niemniej jednak różnica ta nie była znamienna statystycznie (p=0,3). Następnie w miarę kontynuowania chemioterapii odsetek limfocytów T CD4+CD25+FOXP3+ wśród limfocytów T CD4+ wzrastał i po 6. cyklu w stosunku do aktywności po 3. cyklu chemioterapii był statystycznie znamiennie większy (p=0,02). Autorzy wnioskują, że badanie populacji Treg może być przydatne do oceny wpływu chemioterapii na układ odpornościowy gospodarza podczas leczenia systemowego chorych na raka jajnika.

Discipline

Year

Volume

9

Issue

3

Pages

139-146

Physical description

Contributors

  • Oddział Chemioterapii Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy
  • Klinika Ginekologii Onkologicznej Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy, Katedra i Klinika Ginekologii Onkologicznej i Pielęgniarstwa Ginekologicznego CM w Bydgoszczy
  • Zakład Patologii Guza i Patomorfologii Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy
  • Zakład Patologii Guza i Patomorfologii Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy
  • Oddział Teleradioterapii Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy
  • Poradnia Laryngologiczna Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy
  • Poradnia Laryngologiczna Centrum Onkologii im. Franciszka Łukaszczyka w Bydgoszczy. Dr hab. n. med. Łukasz Wicherek, prof. UMK, Oddział Kliniczny Ginekologii i Onkologii CO im. F. Łukaszczyka, ul. Romanowskiej 2, 85-796 Bydgoszcz, tel. 52 374 33 99, 52 374 38 74

References

  • 1. Feng L.L., Wang X.: Targeting Foxp3+ regulatory T cells-re-lated immunosuppression for cancer immunotherapy. Chin. Med. J. (Engl.) 2010; 123: 3334-3342.
  • 2. Kryczek I., Liu R., Wang G. i wsp.: FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res. 2009; 69: 3995-4000.
  • 3. Wilczynski J.R., Kalinka J., Radwan M.: The role of T-regu-latory cells in pregnancy and cancer. Front. Biosci. 2008; 13: 2275-2289.
  • 4. Sasaki Y., Sakai M., Miyazaki S. i wsp.: Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 2004; 10: 347-353.
  • 5. Saito S., Shiozaki A., Sasaki Y. i wsp.: Regulatory T cells and regulatory natural killer (NK) cells play important roles in feto-maternal tolerance. Semin. Immunopathol. 2007; 29: 115-122.
  • 6. Tilburgs T., Roelen D.L., van der Mast B.J. i wsp.: Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol. 2008; 180: 5737-5745.
  • 7. Arruvito L., Sanz M., Banham A.H., Fainboim L.: Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 2007; 178: 2572-2578.
  • 8. Schumacher A., Brachwitz N., Sohr S. i wsp.: Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J. Immunol. 2009; 182: 5488-5497.
  • 9. Zhang L., Conejo-Garcia J.R., Katsaros D. i wsp.: Intratu-moral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003; 348: 203-213.
  • 10. Curiel T.J., Coukos G., Zou L. i wsp.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004; 10: 942-949.
  • 11. Leffers N., Gooden M.J., de Jong R.A. i wsp.: Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol. Immunother. 2009; 58: 449-459.
  • 12. Miller A.M., Lundberg K., Ozenci V i wsp.: CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol. 2006; 177: 7398-7405.
  • 13. Giannopoulos K., Schmitt M., Kowal M. i wsp.: Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol. Rep. 2008; 20: 677-682.
  • 14. Wolf D., Wolf A.M., Rumpold H. i wsp.: The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin. Cancer Res. 2005; 11: 8326-8331.
  • 15. Chan J.K., Cheung M.K., Husain A. i wsp.: Patterns and progress in ovarian cancer over 14 years. Obstet. Gynecol. 2006; 108: 521-528.
  • 16. Chu C.S., Kim S.H., June C.H., Coukos G.: Immunotherapy opportunities in ovarian cancer. Expert Rev. Anticancer Ther. 2008; 8: 243-257.
  • 17. Reinartz S., Pfisterer J., du Bois A. i wsp.: Suppressive activity rather than frequency of FoxP3+ regulatory T cells is essential for CA-125-specific T-cell activation after abagovo-mab treatment. Hum. Immunol. 2010; 71: 36-44.
  • 18. Wu X., Feng Q.M., Wang Y. i wsp.: The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol. Immuno-ther. 2010; 59: 279-291.
  • 19. Kandalaft L.E., Powell D.J. Jr, Singh N., Coukos G.: Immunotherapy for ovarian cancer: what’s next? J. Clin. Oncol. 2011; 29: 925-933.
  • 20. Geller M.A., Cooley S., Judson P.L. i wsp.: A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 2011; 13: 98-107.
  • 21. Hung C.F., Wu T.C., Monie A., Roden R.: Antigen-specific immunotherapy of cervical and ovarian cancer. Immunol. Rev. 2008; 222: 43-69.
  • 22. Wicherek L., Jóźwicki W, Windorbska W i wsp.: Analysis of Treg cell population alterations in the peripheral blood of patients treated surgically for ovarian cancer - a preliminary report. Am. J. Reprod. Immunol. 2011; 66: 444-450.
  • 23. Salvadori S., Martinelli G., Zier K.: Resection of solid tumors reverses T cell defects and restores protective immunity. J. Immunol. 2000; 164: 2214-2220.
  • 24. Cole W.H., Humphrey L.: Need for immunologic stimulators during immunosuppression produced by major cancer surgery. Ann. Surg. 1985; 202: 9-20.
  • 25. Cote A.L., Usherwood E.J., Turk M.J.: Tumor-specific T-cell memory: clearing the regulatory T-cell hurdle. Cancer Res. 2008; 68: 1614-1617.
  • 26. van Tilburg C.M., van Gent R., Bierings M.B. i wsp.: Immune reconstitution in children following chemotherapy for haematological malignancies: a long-term follow-up. Br. J. Haematol. 2011; 152: 201-210.
  • 27. Kang D.H., Weaver M.T., Park N.J. i wsp.: Significant impairment in immune recovery after cancer treatment. Nurs. Res. 2009; 58: 105-114.
  • 28. Liu N., Zheng Y., Zhu Y. i wsp.: Selective impairment of CD4+CD25+Foxp3+ regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis. Int. Immunopharma-col. 2011; 11: 212-219.
  • 29. Zhu Y., Liu N., Xiong S.D. i wsp.: CD4+Foxp3+ regulatory T-cell impairment by paclitaxel is independent of toll-like receptor 4. Scand. J. Immunol. 2011; 73: 301-308.
  • 30. Vicari A.P., Luu R., Zhang N. i wsp.: Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol. Immunother. 2009; 58: 615-628.
  • 31. Zhang L., Dermawan K., Jin M. i wsp.: Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-ba-sed chemotherapy. Clin. Immunol. 2008; 129: 219-229.
  • 32. Mahnke Y.D., Speiser D., Luescher I.F. i wsp.: Recent advances in tumour antigen-specific therapy: in vivo veritas. Int. J. Cancer 2005; 113: 173-178.
  • 33. Prince H.M., Duvic M., Martin A. i wsp.: Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 2010; 28: 1870-1877.
  • 34. Barnett B., Kryczek I., Cheng P. i wsp.: Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am. J. Reprod. Immunol. 2005; 54: 369-377.
  • 35. Mahnke K., Schonfeld K., Fondel S. i wsp.: Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer 2007; 120: 2723-2733.
  • 36. Lutsiak M.E., Semnani R.T., De Pascalis R. i wsp.: Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005; 105: 2862-2868.
  • 37. Liu J.Y., Wu Y., Zhang X.S. i wsp.: Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol. Immunother. 2007; 56: 1597-1604.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-37a684cc-7ad7-45c2-867e-0df2a74e9f79
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.