Preferences help
enabled [disable] Abstract
Number of results
2018 | 95 | 182-192
Article title

Safeguard Guide for Recycling and Handling the Alternative of SF6 GAS in Electrical Investigatory Applications

Title variants
Languages of publication
In recent Researchers most, important center of attention to abolish the need of SF6 gas from insulation systems and develop a novel amalgamated surrogate gas with low GWP, premier insulating properties and cost effective. This new-fangled surrogate gas handling and recycling is a complex job. This forecast shall be probable after essential measurements and investigational work. So, it is urgent and imperative need of Safeguard outline for Handling and Recycling the substitute of SF6 gas in electrical power equipment. This procedure establishes safe working practices list to perform elimination, supervision, and demolition of insecure by-products, normal and trouble maintenance work safely on SF6 gas insulated apparatus.
Physical description
  • [1] M.K.W. Ko, N.D. Sze, W.C. Wang, G. Shia, A. Goldman, F.J. Murcray,D.G. Murcray, C.P. Rinsland, J. Geophys. Res. 98 (1993) 10499–10507
  • [2] F.E. Evans, G.Mani, Sulfur fluorides, in: J.I. Kroschwitz, M. Howe-Grant(Eds.), fourth ed., Kirk-Othmer Encyclopedia of Chemical Technology,vol. 11, John Wiley & Sons, New York, 1994, pp. 428–442
  • [3] H. M. Ryan, Circuit breakers and Interruption, in Advances in High Voltage Engineering, vol. 40, A. Haddad and D. Warne, Eds., London, IEE Power & Energy Series 40, The Institute of Electrical Engineers, pp. 415-476, 2004
  • [4] James, D.R., I. Sauers, G.D. Griffin, R.J Van Brunt, J.K. Olthoff, K.L. Stricklett, F.Y. Chu, J.R. Robins, and H.D. Morr ison. 1993. Investigation of S2F10 production and mitigation in compressed SF6-insulated power systems. IEEE Electrical Insulation Magazine 9(3): 29-51
  • [5] Intergovernmental Panel on Climate Change (IPCC), Working Group I Contribution to Fourth Assessment Report of the IPCC - Intergovernmental Panel on Climate Change, Geneva, Switzerland: Addendum-Errata of Climate Change 2007 - The Physical Science Basis IPCC WG1 AR4 Report, 2008.
  • [6] G.D. Griffin, I. Sauers, L.G. Christophorou, C.E. Easterly, P.J. Walsh. IEEE Trans. Electr. Insul. EI-18 (1983) 551–552
  • [7] G.D. Griffin, M.G. Nolan, C.E. Easterly, I. Sauers, P.C. Votaw, IEE Proc. (Pt. A) 137 (1990) 221–227
  • [8] D.R. James, I. Sauers, G.D. Griffin, R.J. Van Brunt, J.K. Olthoff, K.L.Stricklett, F.Y. Chu, J.R. Robins, H.D. Morrison, IEEE Electr. Insul. Mag. 9 (1993) 29–40
  • [9] H. Katagiri, H. Kasuya and S. Yanabu, “Measurement of Iodine Density Generated from CF3I-CO2 Mixture after Current Interruption,” Japan-Korea Joint Symposium on Electrical Discharge and High Voltage Engineering,Shibaura Institute of Technology,2007.
  • [10] LCA-study "Electricity supply using SF6 technology", April 1999, project group ABB, Preussen Elektra, RWE, Siemens, Solvay. Summary in: B. Zahn and E. Ruess, Economical and ecological system comparison for the electricity supply of an urban Area, CIGRE SC23.99 (COLL) IWD, Zurich 1999.
  • [11] CIGRE WG 23-10, SF6 Recycling Guide, ELECTRA 173 (1997) 43-69.
  • [12] CIGRE WG 23-02, Guide for SF6 gas mixtures, CIGRE technical brochure 163, August 2000, available via
  • [13] CIGRE WG23-03, Handling of SF6 and its decomposition products in gas insulated switchgear (GIS), ELECTRA 136, June 1991, 69-89 (part 1) and 137 (August 1991), 81-105 (part 2)
  • [14] Shenli Jia, Hu Zhao, Xingwen Li, etc. Survey of Recent Researches on the Arc Quenching Characteristics of SF6 Substitute Gases. High Voltage Apparatus, 47, pp. 87-91 (2011).
  • [15] U.S. Environmental Protection Agency (U.S. EPA). 2001a. SF6 Emissions Reduction Partnership for Electric Power Systems: SF6 Handling Procedures. Internet web site at
  • [16] L. Niemeyer. Cigre guide for SF6 Gas Mixture. Application and Handling in Electric Power equipment. Proc. 1st Conf. on SF6 and Environment: Emission and Reduction Strategies 2000, 2–3 November 2000.
  • [17] IEC 61634: 1995, Technical Report-High voltage switchgear and control gear use and handling of Sulphur Hexafluoride (SF6) in high voltage switchgear and control Gear.
  • [18] Van Brunt, R.J., and J.T. Herron. 1990. IEEE Trans. Electr. Insul. E1-25: 75-94.
  • [19] Mauthe,G., and K. Pettersson. 1991. Handling of SF6 and its decomposition products in gas insulated switchgear (GIS). Electra, no. 136:69-89 (Part 1) and no 137: 81-105 (Part 2). June 1991. (Publication of Working Group 23, International Council on Large Electric Systems (CIGRE)
  • [20] S. Menju, H. Aoyagi, K. Takahashi, and H. Qhno, Dielectric Breakdown of High Pressure SF6 in Sphere and Coaxial Cylinder Gaps, IEEE Trans. Power App. Syst., Vol. 93, No. 5, pp. 1706-1712, 1974.
  • [21] T. Takuma, Discharge Characteristics of Gaseous Dielectrics, IEEE Trans. Dielectr. Electr. Insul., Vol. 21, No. 6, pp. 855-867, 1986.
  • [22] H. Katagiri, H. Kasuya, H. Mizoguchi, and S. Yanabu, Investigation of the performance of CF3I Gas as a Possible Substitute for SF6, IEEE Trans. Dielectr. Electr. Insul., Vol. 15, No. 5, pp. 1424-1429, 2008.
  • [23] T. Takeda, S. Matsuoka, A. Kumada, and K. Hidaka, By-product generation through electrical discharge in CF3I gas and its effect to insulation characteristics, IEEJ Trans. Power and Energy, Vol. 131, No. 10, pp. 859-864, 2011
  • [24] L. G. Christophorou and R. J. Van Brunt: SF6-N2 mixtures, IEEE Trans. Dielec. Elec. Insul., 2, (5) (1995) 952-1003
  • [25] ISO Standard 14040 Environmental management – life cycle assessment – principles and framework, 1st ed. 1997
  • [26] Shugg, W.T. Handbook of Electrical and Electronic Insulating Materials;Second ed.; IEEE Press: New York, 1995; 433-452
  • [27] Renshaw, B., and M. Gates. 1946. Di-sulfur decafluoride, in Chemical Warfare Agents and Related Chemical Problems Parts I-II, Office of Scientific Research and Development, National Defense Research Committee, Washington, D.C. NTIS no. PB-158508, Chapter 4, pp. 24-29. [cited in James et al. 1993]
  • [28] National Institute for Occupational Safety and Health (NIOSH). 1997. NIOSH Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, Washington, D.C. NIOSH Publication no. 97-140; NTIS no. PB-97­177604
  • [29] T. Kuczek, M. Stosur, M. Szewczyk, W. Piasecki, M. Steiger, Investigation on new mitigation method for lightning overvoltages in high-voltage power substations, IET Generation Transmission Distribution, vol. 7, no. 10, pp. 1055-1062, 2013.
  • [30] S. Okabe, S. Yuasa, S. Kaneko, G. Ueta, Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms – method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms, IEEE Trans. Dielectr. Electr. Insul., vol. 16, no. 1, pp. 42-51, 2009.
  • [31] A.V. Larin, N. Meurice, D.N. Trubnikov, D.P. Vercauteren, Theoretical analysis of the synergism in the dielectric strength for SF 6 /CF 4 mixtures, J. Appl. Phys., vol. 96, no. 1, pp. 109-117, 2004.
  • [32] M. S. Dincer, H. R. Hiziroglu, Limiting fields in SF6+argon predicted from basic data, IEEE Conf. Electr. Insul. Dielectr. Phenomena, pp. 816-821, 1994.
  • [33] M. Kurihara, Z. Lj. Petrovic, T. Makabe, Transport coefficients and scattering cross-sections for plasma modelling in CF 4 -Ar mixtures: a swarm analysis, J. Phys. D: Appl. Phys., vol. 33, pp. 2146-2153, 2000.
  • [34] D.-P. Kim, K.-T. Kim, C.-I. Kim, Etching Properties of BLT Films in CF 4 /Ar Plasma, J. Korean Phys. Soc., vol. 42, pp. 824-828, 2003.
  • [35] L. Wei, M. Xu, D. Yuan, Y. Zhang, Z. Hu, Z. Tan, Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis, Plasma Science and Technology, vol. 16, no. 10, pp. 941-947, 2014.
  • [36] Y. Deng, C. Lu, D. Xiao, Electron Swarm Parameters in c-C 4 F 8 and CO 2 Gas Mixtures from Boltzmann Equation Analysis, IEEE Trans. Plasma Sci., vol. 40, pp. 2671-2677, 2012.
  • [37] S.S. Tezcan, M. Ali Akcayol, Ozgur Cemal Ozerdem, M.S. Dincer, Calculation of Electron Energy Distribution Functions from Electron Swarm Parameters Using Artificial Neural Network in SF 6 and Argon, IEEE Trans. Plasma Sci., vol. 38, pp. 2332-2339, 2010.
  • [38] M. J. Pinheiro, J. Loureiro, Effective ionization coefficients and electron drift velocities in gas mixtures of SF 6 with He Xe CO 2 and N2 from Boltzmann analysis, J. Phys. D: Appl. Phys, vol. 35, pp. 3077-3084, 2002.
  • [39] H. Itoh, T. Matsumura, K. Satoh, H. Date, Y. Nakao, H. Tagashira, Electron transport coefficients in SF 6, J. Phys. D. Appl. Phys., vol. 26, no. 11, pp. 1975-1979, 1993.
  • [40] K. Rohr, Absolute differential cross sections for e-SF 6 scattering in the a 1g and t 1u resonance region, Phys. B: At. Mol. Phys., vol. 12, no. 5, pp. L185-188, 1979.
  • [41] D. Rapp, P. Englander-Golden, Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization, J. Chem. Phys., vol. 43, no. 5, 1965.
  • [42] T Yoshizawa, Y Sakai, H Tagashira, S Sakamoto, Boltzmann equation analysis of the electron swarm development in SF6, J. Phys. D. Appl. Phys., vol. 12, no. 11, pp. 1839-1852, 1979.
  • [43] A. Chutjian, Experimental/SF6 and Cl- /CFC13 Electron-Attachment Cross Sections in the Energy Range 0–200 meV, Phys. Rev. Lett., vol. 46, pp. 1511-1514, 1981
  • [44] L. E. Kline, D. K. Davies, C. L. Chen, P. J. Chantry, Dielectric properties for SF 6 and SF 6 mixtures predicted from basic data, J. Appl. Phys., vol. 50, no. 11, pp. 6789-6796, 1979.
  • [45] K. Stephan, H. Deutsch, T. Maerk, Absolute partial and total electron impact ionization cross sections for CF 4 from threshold up to 180 eV, J. Chem. Phys., vol. 83, pp. 5712, 1985.
  • [46] W.S. Anderson, J.C. Armitage, E. Dunn, J.G. Heinrich, C. Lu, K.T. McDonald, J. Weckel, Y. Zhu, Electron attachment effective ionization coefficient and electron drift velocity for CF 4 gas mixtures, Nucl. Instrum. Methods Phys. Res. A, vol. 323, pp. 273-279, 1992.
  • [47] L. G. Christophorou, P. G. Datskos, J. G. Carter, Gases of possible interest to SSC muon detectors, Nucl. Instrum. Methods Phys. Res. A, vol. 309, no. 12, pp. 160-168, 1991.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.