PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 111 | 64-73
Article title

Plasma-Enhanced Atmospheric Pressure Spray Pyrolysis System for the Production of Few Walls Carbon Nanotubes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Spray pyrolysis is a recognized technique for the preparation of multi-walled Carbon Nano-Tubes (CNTs). Likewise, gas-phase plasma synthesis has the best potential to produce nanoparticles with narrow sized distribution in short times. Here we present a combination of both concepts to design an atmospheric-pressure plasma reactor in a configuration which can be scaled for massive production of few-walls CNTs. This hybrid setup uses a pneumatic nebulizer which produces an aerosol from a solution of toluene (the carbon source) in the presence of ferrocene (the catalyst). The mist goes toward the plasma zone, which is generated by a DC-soldering torch. The plasma effect is to reduce the droplet size of the nebulizer. By this mean the agglomeration of Fe nanoparticles is reduced and consequently, the number of walls and diameter of CNTs are decreased.
Discipline
Year
Volume
111
Pages
64-73
Physical description
Contributors
author
  • Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km 107 Carretera Tijuana-Ensenada s/n, Ensenada, B.C., C.P. 22800, México
  • Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km 107 Carretera Tijuana-Ensenada s/n, Ensenada, B.C., C.P. 22800, México
  • Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Km 107 Carretera Tijuana-Ensenada s/n, Ensenada, B.C., C.P. 22800, México
  • Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Km 107 Carretera Tijuana-Ensenada s/n, Ensenada, B.C., C.P. 22800, México
References
  • [1] A.M.K. Esawi, M.M. Farag. Carbon nanotube reinforced composites: Potential and current challenges. Mater. Des. 28 (2007) 2394–2401. doi:10.1016/j.matdes.2006.09.022.
  • [2] Y. Hou, J. Tang, H. Zhang, C. Qian, Y. Feng, J. Liu. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano. 3 (2009) 1057–62. doi:10.1021/nn9000512.
  • [3] Z.S. Metaxa, M.S. Konsta-Gdoutos, S.P. Shah. Carbon Nanotubes Reinforced Concrete. Spec. Publ. 267 (2009) 11–20.
  • [4] Glass Fiber Reinforcements – A Global Market Overview. Ind. Expert. (2012) CP014ARCH
  • [5] J. Hahn, J.H. Han, J.-E. Yoo, H.Y. Jung, J.S. Suh, New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet, Carbon 42 (2004) 877–883. doi:10.1016/j.carbon.2004.01.073.
  • [6] C.H. See, A.T. Harris, A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition. Ind. Eng. Chem. Res. 46 (2007) 997–1012. doi:10.1021/ie060955b.
  • [7] J.R. Fincke, R.P. Anderson, T.A. Hyde, B.A. Detering, Plasma pyrolysis of methane to hydrogen and carbon black. Ind. Eng. Chem. Res. 41 (2002) 1425–1435.
  • [8] Y. Miyata, K. Mizuno, H. Kataura, Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy. J. Nanomater. 2011 (2011) 1–7. doi:10.1155/2011/786763.
  • [9] W.-H. Chiang, R.M. Sankaran, Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Appl. Phys. Lett. 91 (2007) 121503. doi:10.1063/1.2786835.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-35e037c6-7f85-4b8e-8f3b-1104cdfecfd1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.