PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 2 | 1 | 31-45
Article title

Zwyrodnienie plamki związane z wiekiem. Część II: metody leczenia – chirurgiczne, monoterapia i terapie złożone

Authors
Content
Title variants
EN
Age related macular degeneration. Part II: therapeutic options – surgical, pharmacological and composite therapies
Languages of publication
PL
Abstracts
EN
Macular degeneration associated with age is a leading cause of central vision loss. The disease process involves macular area of the retina and leads to a significant deterioration of visual acuity and, thus, a quality of life. A patient loses the opportunity to practice their profession, read, watch TV or drive. This condition is significantly associated with aging and degeneration of tissues and usually occurs after age of 50. Pharmaceuticals and other therapeutic approaches were introduced a few years ago and they substantially improved the prognosis for keeping the useful field of vision. The breakthrough discovery was clinically confirmed inhibition endothelial growth factor, causing neovascularization, which resulted in the lack of growth of abnormal vessels and as a result protected not only against the decrease in visual acuity, but even improved this function. It was a real revolution in ophthalmology, which gave patients hope for a full recovery. But is it possible? As practice and researchers’ reports show, struggle to inhibit the progress of the disease continues. Surgical treatment, topical drugs administered systemically, plasmapheresis, virus vector and radiotherapy are examples of the ways to fight to preserve central vision. The therapeutic arsenal is expanding rapidly and gives hope to inhibit the development of the disease.
PL
Zwyrodnienie plamki związane z wiekiem jest najczęstszą przyczyną utraty widzenia centralnego. Proces chorobowy obejmuje region plamkowy siatkówki i prowadzi do znacznego pogorszenia ostrości wzroku, a co za tym idzie – jakości życia. Chory traci możliwość uprawiania dotychczas wykonywanego zawodu, czytania, oglądania telewizji czy prowadzenia samochodu. Schorzenie to jest wyraźnie związane z procesami starzenia się i degeneracji tkanek i zazwyczaj pojawia się po 50. r.ż. Dopiero kilka lat temu wprowadzono środki farmakologiczne i inne metody terapeutyczne, które zdecydowanie poprawiły szanse na zachowanie użytecznej ostrości wzroku. Przełomowym odkryciem było klinicznie potwierdzone zahamowanie endotelialnego czynnika wzrostu, powodującego neowaskularyzację, co skutkowało brakiem wzrostu nieprawidłowych naczyń i w efekcie chroniło nie tylko przed spadkiem ostrości wzroku, ale nawet tę funkcję poprawiało. To była prawdziwa rewolucja w okulistyce, która dała pacjentom nadzieję na całkowite wyleczenie. Jednak czy jest ono możliwe? Jak wskazują doświadczenia kliniczne i doniesienia badaczy, walka o zahamowanie rozwoju choroby trwa. Leczenie chirurgiczne, leki podawane miejscowo i ogólnie, plazmafereza, wirusy wektorowe, radioterapia to tylko niektóre sposoby w walce o zachowanie widzenia centralnego. Arsenał terapeutyczny stale i intensywnie się poszerza i daje nadzieję na powstrzymanie rozwoju schorzenia.
Discipline
Publisher
Journal
Year
Volume
2
Issue
1
Pages
31-45
Physical description
References
  • 1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182-1186.
  • 2. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983-985.
  • 3. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851-858.
  • 4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9(6): 669-676.
  • 5. Houck KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806-1814.
  • 6. Olsson AK, Dimberg A, Kreuger J, et al. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 2006; 7(5): 359-371.
  • 7. Sheikpranbabu S, Kalishwaralal K, Venkataraman D, et al. Silver nanoparticles inhibit VEGF- and IL-1beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnology 2009; 7: 8.
  • 8. Allen WR, Gower S, Wilsher S. Immunohistochemical localization of vascular endothelial growth factor (VEGF) and its two receptors (Flt-I and KDR) in the endometrium and placenta of the mare during the oestrous cycle and pregnancy. Reprod Domest Anim 2007; 42(5): 516-526.
  • 9. Witmer AN, Vrensen GF, Van Noorden CJ, et al. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003; 22(1): 1-29.
  • 10. Hiroshima K, Ng YS, Zhong L, et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007; 171(1): 53-67.
  • 11. Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Exp Eye Res 2007; 85(6): 762-771.
  • 12. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 2005; 109(3): 227-241.
  • 13. Slomiany MG, Rosenzweig SA. Autocrine effects of IGF-I-induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. Am J Physiol Cell Physiol 2004; 287(3): C746-753.
  • 14. Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 2009; 116(1): 73-79.
  • 15. Tsai DC, Charng MJ, Lee FL, et al. Different plasma levels of vascular endothelial growth factor and nitric oxide between patients with choroidal and retinal neovascularisation. Ophthalmologica 2006; 220(4): 246-251.
  • 16. Boulton ME, Cai J, Grant MB. Gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med 2008; 12(3): 781-795.
  • 17. Chappelow AV, Kaiser PK. Neovascular age-related macular degeneration: potential therapies. Drugs 2008; 68(8): 1029- 1036.
  • 18. Michels S, Schmidt-Erfurth U, Rosenfeld PJ. Promising new treatments for neovascular age-related macular degeneration. Expert Opin Investig Drugs 2006; 15(7): 779-793.
  • 19. Leung E, Landa G. Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol 2013; 6(5): 565-579.
  • 20. Steinbrook R. The price of sight – ranibizumab, bevacizumab, and the treatment of macular degeneration. N Engl J Med 2006; 355(14): 1409-1412.
  • 21. Bakri SJ, Snyder MR, Reid JM, et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology 2007; 114(12): 2179-2182.
  • 22. Gillies MC, Walton RJ, Arnold JJ, et al. Comparison of outcomes from a phase 3 study of age-related macular degeneration with a matched, observational cohort. Ophthalmology 2014; 121(3): 676-681.
  • 23. Kaiser PK, Blodi BA, Shapiro H, et al. MARINA Study Group. Angiographic and optical coherence tomographic results of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 2007; 114(10): 1868- 1875.
  • 24. Regillo CD, Brown DM, Abraham P, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol 2008; 145(2): 239-248.
  • 25. Schmidt-Erfurth U, Eldem B, Guymer R, et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology 2011; 118(5): 831-839.
  • 26. Dafer RM, Schneck M, Friberg TR, et al. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol 2007; 22(3): 201-204.
  • 27. Krzystolik MG, Afshari MA, Adamis AP, et al. Prevention of experimental choroidal neovascularization with intravitreal anti- vascular endothelial growth factor antibody fragment. Arch Ophthalmol 2002; 120(3): 338-346.
  • 28. Rosenfeld PJ, Mosfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 2005; 36: 331-335.
  • 29. Teper S, Nowińska A, Lyssek-Boroń A, et al. Neovascular form of age-related macular degeneration – current management in Poland and in Europe. Pol Merkur Lekarski 2014; 37(217): 56-60.
  • 30. Lad EM, Hammill BG, Qualls LG, et al. Anti-VEGF treatment patterns for neovascular age-related macular degeneration among medicare beneficiaries. Am J Ophthalmol 2014; 158(3): 537-543.
  • 31. Schmidt-Erfurth UM, Richard G, Augustin A, et al. Guidance for the treatment of neovascular age-related macular degeneration. Acta Ophthalmol Scand 2007; 85(5): 486-494.
  • 32. Ying GS, Kim BJ, Maguire MG, et al. Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. CATT Research Group. JAMA Ophthalmol 2014; 132(8): 915-921.
  • 33. Silva R, Axer-Siegel R, Eldem B, et al. SECURE Study Group. The SECURE study: long-term safety of ranibizumab 0.5 mg in neovascular age-related macular degeneration. Ophthalmology 2013; 120(1): 130-139.
  • 34. Larrivée B, Freitas C, Suchting S, et al. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104(4): 428-441.
  • 35. Tamura H, Miyamoto K, Kiryu J, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci 2005; 46(4): 1440-1444.
  • 36. Jonas JB, Hayler JK, Panda-Jonas S. Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative vitreoretinopathy. Br J Ophthalmol 2000; 84(9): 1064-1067.
  • 37. Sivaprasad S, Patra S, DaCosta J, et al. A pilot study on the combination treatment of reduced-fluence photodynamic therapy, intravitreal ranibizumab, intravitreal dexamethasone and oral minocycline for neovascular age-related macular degeneration. Ophthalmologica 2011; 225(4): 200-206.
  • 38. Si JK, Tang K, Bi HS, et al. Combination of ranibizumab with photodynamic therapy vs ranibizumab monotherapy in the treatment of age-related macular degeneration: a systematic review and meta-analysis of randomized controlled trials. Int J Ophthalmol 2014; 7(3): 541-549.
  • 39. Ranchod TM, Ray SK, Daniels SA, et al. LuceDex: a prospective study comparing ranibizumab plus dexamethasone combination therapy versus ranibizumab monotherapy for neovascular age-related macular degeneration. Retina 2013; 33(8): 1600- 1604.
  • 40. Augustin AJ, Puls S, Offermann I. Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina 2007; 27(2): 133-140.
  • 41. Söderberg AC. Algvere PV, Hengstler JC, et al. Combination therapy with low-dose transpupillary thermotherapy and intravitreal ranibizumab for neovascular age-related macular degeneration: a 24-month prospective randomized clinical study. Br J Ophthalmol 2012; 96(5): 714-718.
  • 42. Koch F, Scholtz S, Singh P, et al. Kombinierte intravitreale Therapie zur Behandlung der altersbedingten Makuladegeneration. Klin Monbl Augenheilkd 2008; 225(12): 1003-1008.
  • 43. de Oliveira Dias JR, Rodrigues EB, Maia M. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol 2011; 95(12): 1631-1637.
  • 44. Zehetner C, Kirchmair R, Neururer SB, et al. Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci 2014; 55(1): 337-344.
  • 45. Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 2006; 9(4): 225-230.
  • 46. Diago T, Pulido JS, Molina JR, et al. Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin Proc 2008; 83(2): 231-234.
  • 47. Fischer T. A new possible strategy for prevention and preventive treatment of age-related macular degeneration resting on recent clinical and pathophysiological observations. Orv Hetil 2009; 150(11): 503-512.
  • 48. Geltzer A, Turalba A, Vedula SS. Surgical implantation of steroids with antiangiogenic characteristics for treating neovascular age-related macular degeneration. Cochrane Database Syst Rev 2013 Jan 1: CD005022.
  • 49. Joussen AM, Kirchhof B. Surgery for age-related macular degeneration. Still an option in the age of pharmacotherapy? Klin Monbl Augenheilkd 2014; 231(9): 874-882.
  • 50. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: I. Experimental studies in the rabbit eye. Graefes Arch Clin Exp Ophthalmol 1993; 231(11): 629-634.
  • 51. Machemer R. Macular translocation. Am J Ophthalmol 1998; 125(5): 698-700.
  • 52. Aisenbrey S, Bartz-Schmidt KU, Walter P, et al. Long-term follow-up of macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol 2007; 125(10): 1367-1372.
  • 53. Charles S, Calzada J, Wood B. Submacular surgery and macular translocation. W: Charles S, Calzada J, Wood B (red.). Vitreous microsurgery. Fourth Edition. Lippincott Williams & Wilkins, Philadelphia 2007; 14: 163-171.
  • 54. Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology 2004; 111(9): 1715-1724.
  • 55. Uppal G, Milliken A, Lee J, et al. New algorithm for assessing patient suitability for macular translocation surgery. Clin Experiment Ophthalmol 2007; 35(5): 448-457.
  • 56. Aisenbrey S, Lafaut BA, Szurman P, et al. Macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol 2002; 120(4): 451-459.
  • 57. Pieramici DJ, de Juan E Jr, Fujii GY, et al. Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol 2000; 130(4): 419-428.
  • 58. de Juan E Jr, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol 1988; 105(1): 25-29.
  • 59. Thomas MA, Grand MG, Williams DF, et al. Surgical management of subfoveal choroidal neovascularization. Ophthalmology 1992; 99(6): 952-968.
  • 60. Bressler NM, Bressler SB, Hawkins BS, et al. Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol 2000; 130(4): 387-407.
  • 61. Hawkins BS, Bressler NM, Miskala PH, et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology 2004; 111(11): 1967-1980.
  • 62. van Meurs JC, ter Averst AE, Hofland LJ, et al. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol 2004; 88(1): 110-113.
  • 63. Aisenbrey S, Lafaut B A, Szurman P, et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol 2006; 124(2): 183-188.
  • 64. Peyman G A, Blinder KJ, Paris CL, et al. A technique for retinal pigment epithelium to extensive subfoveal scarring. Ophthalmic Surg 1991; 22(2): 102-108.
  • 65. van Meurs JC, van den Biesen PR. Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol 2003; 136(4): 688-695.
  • 66. MacLaren RE, Bird AC, Sathia PJ, et al. Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology 2005; 112(12): 2081-2087.
  • 67. Maaijwee K, Heimann H, Missotten T, et al. Retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol 2007; 245(11): 1681-1689.
  • 68. Dadgostar H, Kaiser PK. Review siRNA therapeutics for age-related macular degeneration: promises and pitfalls. Expert Review of Ophthalmol 2009; 4(5): 525-535.
  • 69. Kang KN, Lee YS. RNA aptamers: a review of recent trends and applications. Adv Biochem Eng Biotechnol 2013; 131: 153- 169.
  • 70. Megan M, McLaughlin MS, Marcella G, et al. Initial exploration of oral pazopanib in healthy participants and patients with age-related macular degeneration. JAMA Ophthalmol 2013; 131(12): 1595-1601.
  • 71. Muether PS, Neuhann I, Buhl C, et al. Intraocular growth factors and cytokines in patients with dry and neovascular age-related macular degeneration. Retina 2013; 33(9): 1809-1814.
  • 72. de Oliveira Dias JR, Rodrigues EB, Maia M, et al. Cytokines in neovascular age-related macular degeneration: fundamentals of targeted combination therapy. Br J Ophthalmol 2011; 95(12): 1631-1637.
  • 73. Ahmad I, Balasubramanian S, Del Debbio CB, et al. Regulation of ocular angiogenesis by Notch signaling: implications in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 2011; 52(6): 2868-2878.
  • 74. Mousa SA, Mousa SS. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. Bio Drugs 2010; 24(3): 183-194.
  • 75. Palanki MS, Akiyama H, Campochiaro P, et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy) phenyl]amino}-1,2,4-benzotria zin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem 2008; 51(6): 1546-1559.
  • 76. Doukas J, Mahesh S, Umeda N, et al. Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol 2008; 216(1): 29-37.
  • 77. Palanki MS, Akiyama H, Campochiaro P, et al. Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy) phenyl]amino}-1,2,4-benzotriazin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem 2008; 51(6): 1546-1559.
  • 78. Csaky KG, Dugel PU, Pierce AJ, et al. Clinical evaluation of pazopanib eye drops versus ranibizumab intravitreal injections in subjects with neovascular age-related macular degeneration. Ophthalmology 2014; 25(14): 942-947.
  • 79. Cao GF, Liu Y, Yang W, et al. Rapamycin sensitive mTOR activation mediates nerve growth factor (NGF) induced cell migration and pro-survival effects against hydrogen peroxide in retinal pigment epithelial cells. Biochem Biophys Res Commun 2011; 414(3): 499-505.
  • 80. Zahn G, Vossmeyer D, Stragies RI, et al. Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Arch Ophthalmol 2009; 127(10): 1329-1335.
  • 81. Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica 2009; 223(6): 401-410.
  • 82. Patel S. Combination therapy for age-related macular degeneration. Retina 2009; 29(6 suppl): 45-48.
  • 83. Ibrahim MA, Do DV, Sepah YJ, et al. Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety and efficacy of intravenous combretastatin A-4 phosphate. BMC Pharmacol Toxicol 2013; 14: 14-17.
  • 84. Arias HR, Richards VE, Ng D, et al. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol 2009; 41(7): 1441-1451.
  • 85. Campochiaro PA, Nguyen QD, Shah SM, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther 2006; 17: 167-176.
  • 86. Rasmussen H, Chu KW, Campochairo P, et al. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF. 11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 2001; 12: 2029-2032.
  • 87. Askou AL. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol 2014; 92(3): 1-38.
  • 88. Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med 2008; 86(11): 1205-1219.
  • 89. Edwards AO, Ritter R 3rd, Abel KJ. Complement factor H polymorphism and age-related macular degeneration. Science 2005; 308: 421-424.
  • 90. Yates JR, Sepp T, Matharu BK, et al. Genetic Factors in AMD Study Group. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 2007; 357: 553-561.
  • 91. Skeie JM, Fingert JH, Russell SR, et al. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest Ophthalmol Vis Sci 2010; 51(10): 5336-5342.
  • 92. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology 2014; 121(3): 693-701.
  • 93. Jackson TL, Chakravarthy U, Slakter JS, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: year 2 results of the INTREPID study. INTREPID Study Group. Ophthalmology 2015; 122(1): 138-145.
  • 94. Nolan JM, Loskutova E, Howard AN, et al. Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis 2014; 42(4): 1191-1202.
  • 95. Wong WT, Kam W, Cunningham D, et al. Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci 2010; 51(12): 6131-6139.
  • 96. Schmitz-Valckenberg S, Mössner A, Fleckenstein M, et al. Therapy approaches for geographic atrophy. Ophthalmologe 2010; 107(11): 1016-1019.
  • 97. Owen LA, Morrison MA, Ahn J, et al. FLT1 genetic variation predisposes to neovascular AMD in ethnically diverse populations and alters systemic FLT1 expression. Invest Ophthalmol Vis Sci 2014; 55(6): 3543-3554.
  • 98. Aoki A. Novel gene transfer using micellar nanovectors inhibits choroidal neovascularization. Nihon Ganka Gakkai Zasshi 2013; 117(11): 869-877.
  • 99. Rota R, Riccioni T, Zaccarini M, et al. Marked inhibition of retinal neovascularization in ratsfollowing soluble-flt-1 gene transfer. J Gene Med 2004; 6(9): 992-1002.
  • 100. Tao W, Wen R, Goddard MB, et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2002; 43: 3292-3298.
  • 101. Damico FM, Gasparin F, Scolari MR, et al. New approaches and potential treatments for dry age-related macular degeneration. Arq Bras Oftalmol 2012; 75(1): 71-76.
  • 102. Pulido JS, Winters JL, Boyer D. Preliminary analysis of the final multicenter investigation of rheopheresis for age related macular degeneration (AMD) trial (MIRA-1) results. Trans Am Ophthalmol Soc 2006; 104: 221-231.
  • 103. Klingel R, Fassbender C, Heibges A, et al. RheoNet registry analysis of rheopheresis for microcirculatory disorders with a focus on age-related macular degeneration. Ther Apher Dial 2010; 14(3): 276-286.
  • 104. Rossi M, Puccini R, Romagnoli MC, et al. Acute and subacute effect of rheopheresis on microvascular endothelial function in patients suffering from age-related macular degeneration. Ther Apher Dial 2009; 13(6): 540-548.
  • 105. Yeh JH, Cheng CK, Chiu HC. A case report of double-filtration plasmapheresis for the treatment of age-related macular degeneration. Ther Apher Dial 2008; 12(6): 500-504.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-35d3c841-7576-408d-94ba-b28c51e5f830
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.