Preferences help
enabled [disable] Abstract
Number of results
2019 | 134 | 2 | 187-197
Article title

Current Highlights in the Use of Magnetic Resonance Spectroscopy in Multiple Sclerosis

Title variants
Languages of publication
Magnetic resonance spectroscopy is a non-invasive method used to measure concentrations of selected metabolites in brain such as: N-acetylaspartate, creatine, choline, glutamic acid, myo-inositol, lactic acid or γ-aminobutyric acid. The MRS allows the researcher to obtain information about biochemical composition in selected localizations of the examined CNS and is based on the interpretation of spectra of specific chemical compounds. The aim of this study is a literature review of papers from last 5 years involving the use of MRS in multiple sclerosis. Magnetic resonance spectroscopy is a modern, promising metabolomic imaging method enabling the assessment of brain metabolite concentrations and the dynamism of their changes in healthy people and patients suffering from multiple sclerosis at every stage of the disease. MRS is helpful not only in correlating changes in metabolite concentrations at various central nervous system locations with clinical manifestations, but is also an increasingly improving tool for predicting disease progression. Magnetic resonance spectroscopy may also be useful in more specific clinical situations such as differential diagnosis between multiple sclerosis and Devic’s syndrome or between tumefactive demyelinating lesions and gliomas. Especially in the latter case, the development of this technology may in the future result in the possibility of avoiding invasive biopsy in patients during the diagnosis of focal changes in the CNS. One should also not forget about the role that MRS may play in the future in monitoring the course of treatment with modern MS drugs, not only in everyday clinical practice but also at the stage of clinical trials. The development of fast MRS techniques, significantly shortening the acquisition time and 7 T magnetic resonance spectroscopy, precise and repeatable method of quantitative analysis of brain metabolites may be particularly helpful in achieving these goals.
Physical description
  • Chair and Department of Neurology, Medical University of Lublin, 8 dr. K. Jaczewskiego Str., 20-954 Lublin, Poland
  • Department of Neurology, Specialistic Hospital in Puławy, 1 J. Bema Str., 24-100 Puławy, Poland
  • Chair and Department of Neurology, Medical University of Lublin, 8 dr. K. Jaczewskiego Str., 20-954 Lublin, Poland
  • Chair and Department of Neurology, Medical University of Lublin, 8 dr. K. Jaczewskiego Str., 20-954 Lublin, Poland
  • Department of Radiography, Medical University of Lublin, 16 S. Staszica Str., 20-400 Lublin, Poland
  • [1] Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17(2) (2018) 162-173.
  • [2] Kocevar G, Stamile C, Hannoun S, Roch JA, Durand-Dubief F, Vukusic S, Cotton F, Sappey-Marinier D. Weekly follow up of acute lesions in three early multiple sclerosis patients using MR spectroscopy and diffusion. J Neuroradiol. 45(2) (2018) 108-113.
  • [3] Solana E, Martinez-Heras E, Martinez-Lapiscina EH, Sepulveda M, Sola-Valls N, Bargalló N, Berenguer J, Blanco Y, Andorra M, Pulido-Valdeolivas I, Zubizarreta I, Saiz A, Llufriu S. Magnetic resonance markers of tissue damage related to connectivity disruption in multiple sclerosis. Neuroimage Clin. 12(20) (2018) 161-168.
  • [4] Basha MAA, Bessar MA, Ahmed AF, Elfiki IM, Elkhatib THM, Mohamed AME. Does MR spectroscopy of normal-appearing cervical spinal cord in patients with multiple sclerosis have diagnostic value in assessing disease progression? A prospective comparative analysis. Clin Radiol. 73(9) (2018) 835.e1-835.e9.
  • [5] Sun J, Song H, Yang Y, Zhang K, Gao X, Li X, Ni L, Lin P, Niu C. Metabolic changes in normal appearing white matter in multiple sclerosis patients using multivoxel magnetic resonance spectroscopy imaging. Medicine (Baltimore) 96(14) (2017) e6534.
  • [6] Duan Y, Liu Z, Liu Y, Huang J, Ren Z, Sun Z, Chen H, Dong H, Ye J, Li K. Metabolic changes in normal-appearing white matter in patients with neuromyelitis optica and multiple sclerosis: a comparative magnetic resonance spectroscopy study. Acta Radiol. 58(9) (2017) 1132-1137.
  • [7] Fleischer V, Kolb R, Groppa S, Zipp F, Klose U, Gröger A. Metabolic Patterns in Chronic Multiple Sclerosis Lesions and Normal-appearing White Matter: Intraindividual Comparison by Using 2D MR Spectroscopic Imaging. Radiology 281(2) (2016) 536-543.
  • [8] Wood ET, Ercan E, Sati P, Cortese ICM, Ronen I, Reich DS. Longitudinal MR spectroscopy of neurodegeneration in multiple sclerosis with diffusion of the intra-axonal constituent N-acetylaspartate. Neuroimage Clin. 22(15) (2017) 780-788.
  • [9] Zaini WH, Giuliani F, Beaulieu C, Kalra S, Hanstock C. Fatigue in Multiple Sclerosis: Assessing Pontine Involvement Using Proton MR Spectroscopic Imaging. PLoS One 19;11(2) (2016) e0149622.
  • [10] Khan O, Seraji-Bozorgzad N, Bao F, Razmjou S, Caon C, Santiago C, Latif Z, Aronov R, Zak I, Ashtamker N, Kolodny S, Ford C, Sidi Y. The Relationship Between Brain MR Spectroscopy and Disability in Multiple Sclerosis: 20-Year Data from the U.S. Glatiramer Acetate Extension Study. J Neuroimaging 27(1) (2017) 97-106.
  • [11] Abdel-Aziz K, Schneider T, Solanky BS, Yiannakas MC, Altmann DR, Wheeler-Kingshott CA, Peters AL, Day BL, Thompson AJ, Ciccarelli O. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain 138(Pt 6) (2015) 1568-82.
  • [12] Nantes JC, Proulx S, Zhong J, Holmes SA, Narayanan S, Brown RA, Hoge RD, Koski L. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis. Neuroimage 15;157 (2017) 705-715.
  • [13] Cawley N, Solanky BS, Muhlert N, Tur C, Edden RA, Wheeler-Kingshott CA, Miller DH, Thompson AJ, Ciccarelli O. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain 138(Pt 9) (2015) 2584-95.
  • [14] Cao G, Edden RAE, Gao F, Li H, Gong T, Chen W, Liu X, Wang G, Zhao B. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis. Eur Radiol 28(3) (2018) 1140-1148.
  • [15] Datta G, Violante IR, Scott G, Zimmerman K, Santos-Ribeiro A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Matthews PM. Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis. Mult Scler 23(11) (2017) 1469-1478.
  • [16] Kauv P, Ayache SS, Créange A, Chalah MA, Lefaucheur JP, Hodel J, Brugières P. Adenosine Triphosphate Metabolism Measured by Phosphorus Magnetic Resonance Spectroscopy: A Potential Biomarker for Multiple Sclerosis Severity. Eur Neurol 77(5-6) (2017) 316-321.
  • [17] Marshall I, Thrippleton MJ, Bastin ME, Mollison D, Dickie DA, Chappell FM, Semple SIK, Cooper A, Pavitt S, Giovannoni G, Wheeler-Kingshott CAMG, Solanky BS, Weir CJ, Stallard N, Hawkins C, Sharrack B, Chataway J, Connick P, Chandran S; MS-SMART Trialists. Characterisation of tissue-type metabolic content in secondary progressive multiple sclerosis: a magnetic resonance spectroscopic imaging study. J Neurol 265(8) (2018) 1795-1802.
  • [18] Kirov II, Liu S, Tal A, Wu WE, Davitz MS, Babb JS, Rusinek H, Herbert J, Gonen O. Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging. Hum Brain Mapp 38(8) (2017) 4047-4063.
  • [19] Wu X, Hanson LG, Skimminge A, Sorensen PS, Paulson OB, Mathiesen HK, Blinkenberg M. Cortical N-acetyl aspartate is a predictor of long-term clinical disability in multiple sclerosis. Neurol Res 36(8) (2014) 701-8.
  • [20] Pardini M, Botzkowski D, Müller S, Vehoff J, Kuhle J, Ruberte E, Würfel J, Gass A, Valmaggia C, Tettenborn B, Putzki N, Yaldizli Ö. The association between retinal nerve fibre layer thickness and N-acetyl aspartate levels in multiple sclerosis brain normal-appearing white matter: a longitudinal study using magnetic resonance spectroscopy and optical coherence tomography. Eur J Neurol 23(12) (2016) 1769-1774.
  • [21] MacMillan EL, Tam R, Zhao Y, Vavasour IM, Li DK, Oger J, Freedman MS, Kolind SH, Traboulsee AL. Progressive multiple sclerosis exhibits decreasing glutamate and glutamine over two years. Mult Scler 22(1) (2016) 112-6.
  • [22] Azevedo CJ, Kornak J, Chu P, Sampat M, Okuda DT, Cree BA, Nelson SJ, Hauser SL, Pelletier D. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 76(2) (2014) 269-78.
  • [23] Kantorová E, Poláček H, Bittšanský M, Baranovičová E, Hnilicová P, Čierny D, Sivák Š, Nosáľ V, Zeleňák K, Kurča E. Hypothalamic damage in multiple sclerosis correlates with disease activity, disability, depression, and fatigue. Neurol Res 39(4) (2017) 323-330.
  • [24] Majima H, Ito T, Koyama N. A case of pediatric multiple sclerosis presenting with a tumefactive demyelinating lesion. Rinsho Shinkeigaku 57(2) (2017) 88-91.
  • [25] Ikeguchi R, Shimizu Y, Abe K, Shimizu S, Maruyama T, Nitta M, Abe K, Kawamata T, Kitagawa K. Proton magnetic resonance spectroscopy differentiates tumefactive demyelinating lesions from gliomas. Mult Scler Relat Disord 26 (2018) 77-84.
  • [26] Kim HH, Jeong IH, Hyun JS, Kong BS, Kim HJ, Park SJ. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One 12(7) (2017) e0181758.
  • [27] Yetkin MF, Mirza M, Dönmez H. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis. Medicine (Baltimore) 95(36) (2016) e4782.
  • [28] Wiebenga OT, Klauser AM, Schoonheim MM, Nagtegaal GJ, Steenwijk MD, van Rossum JA, Polman CH, Barkhof F, Pouwels PJ, Geurts JJ. Enhanced axonal metabolism during early natalizumab treatment in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 36(6) (2015) 1116-23.
  • [29] Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, Montalban X, Boyko AN, Comi G; ALLEGRO Study Group. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 85(8) (2014) 851-8.
  • [30] Zhou L, Fan Y. Randomized trial of erhuangfang for relapsing multiple sclerosis. Neurol Res 37(7) (2015) 633-7.
  • [31] Schneider R, Bellenberg B, Hoepner R, Kolb EM, Ellrichmann G, Haghikia A, Gold R, Lukas C. Metabolic profiles by 1H-magnetic resonance spectroscopy in natalizumab-associated post-PML lesions of multiple sclerosis patients who survived progressive multifocal leukoencephalopathy (PML). PLoS One 12(4) (2017) e0176415.
  • [32] Al-Iedani O, Lechner-Scott J, Ribbons K, Ramadan S. Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis. J Biomed Sci 24(1) (2017) 17.
  • [33] Donadieu M, Le Fur Y, Lecocq A, Maudsley AA, Gherib S, Soulier E, Confort-Gouny S, Pariollaud F, Ranjeva MP, Pelletier J, Guye M, Zaaraoui W, Audoin B, Ranjeva JP. Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: Proof of concept in multiple sclerosis. J Magn Reson Imaging 44(2) (2016) 411-9.
  • [34] Prinsen H, de Graaf RA, Mason GF, Pelletier D, Juchem C. Reproducibility measurement of glutathione, GABA, and glutamate: Towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7T. J Magn Reson Imaging 45(1) (2017) 187-198.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.