PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 96 | 35-58
Article title

Modification of Nitinol Biomaterial for Medical Applications

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the paper, a review of modification methods which have been applied to Nitinol intermetallic compound used as biomaterial for medical applications, is carried out. A variety of methods used for Nitinol improvement, beginning from its manufacture, covers mechanical treatment, heat treatment, chemical processing including water boiling, electropolishing, plasma ion implantation, coating to improve the corrosion resistance, minimize nickel leaching, improve osseointegration, and/or vascular compatibility, sterilization and disinfection. Nitinol alloying by addition of a third element to replace Ti or Ni has an enormous effect on phase transformation, corrosion resistance and biocompatibility of the newly created ternary Nitinol alloy. Unfortunately, the ternary nitinol alloys – apart from NiTiCu in actuators and NiTiCr in wires used as a pulling-pushing tool in minimally invasive spine operation – have not found a widespread industrial application yet. One of the most effective surface finishing operations used for metallic biomaterials, with a special attention directed to Nitinol, appears to be magnetoelectropolishing (MEP). A uniform magnetic field used in MEP process can be generated by permanent magnets or by electromagnets. MEP leads to refinement of surface chemical composition impossible to achieve by standard electropolishing. During MEP of alloys and intermetallic compounds, ferromagnetic elements, such as Fe (from stainless steels) or Ni, are primarily removed from the surface so that the passive film on Nitinol is totally composed of titanium oxide. One more unique feature of metal samples after MEP is their de-hydrogenation noticed both in stainless steels, niobium, titanium and Nitinol. In fact, the fatigue resistance of Nitinol after MEP referred to as-received, dependent on the refinement and displacement of inclusions, increases from three to seven times.
Discipline
Publisher

Year
Volume
96
Pages
35-58
Physical description
Contributors
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
  • Electrobright, Macungie PA, USA
References
  • [1] US FDA Workshop - Cardiovascular Metallic Implants: Corrosion, Surface Characterization, and Nickel Leaching, March 8-9, 2012.
  • [2] Z. Cui, H. Man, X. Yang, The corrosion and nickel release behavior of laser surface- melted NiTi shape memory alloys in Hanks solution. Surface & Coatings Technology 192 (2005) 347-353.
  • [3] B. Clarke, W. Carroll, Y. Rochev, M. Hynes, D. Bradley, D. Plumley, Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. J. Biomed. Mater. Res. 79A (2006) 61-70.
  • [4] J. Sui, W. Cai, Effect of diamond-like carbon (DLC) on the properties of the NiTi alloy. Diamond & Relat. Mater. 15 (2006) 1720-1726.
  • [5] D.E. Allie, C.J. Hebert., C.M. Walker, Nitinol stent fractures in the SFA. Endovasc. Today 7 (2004) 22-34.
  • [6] I.S. Chang, H.K. Chee., S.W. Park, I.J. Yun, J.J. Hwang, S.A. Lee, J.S. Kim, S.H. Chang, H.G. Jung, The primary patency and fracture rates of self-expandable nitinol stents placed in the popliteal artieries, especially in the P2 and P3 Segments, in Korean Patients. Korean J. Radiol. 12(2) (2011) 203-209.
  • [7] W. Nicholson, W.J. Nicholson, P. Tolerico, B. Taylor, S. Solomon, T. Schryver, K. McCullum, H. Goldberg, J. Mills, B. Schuler, L. Shears, L. Siddoway, N. Agarwal, C. Tuohy, Prevalence of fracture and fragment embolization of Bard retrievable vena cava filters and clinical implications including cardiac perforation and tamponade. Arch. Intern. Med. 170(20) (2010) 1827-31.
  • [8] J.C.A. Oh, S.O.A. Trerotola, M.A. Dagli, R.A.A. Shlansky-Goldberg, M.C.A. Soulen, M.A. Itkin, J.A. Mondschein, J.A. Solomon, S.W.A. Stavropoulos, Removal of retrievable inferior vena cava filters with computed tomography findings indicating tenting or penetration of the inferior vena cava wall. J. Vasc. & Inter. Radiol. 22(1) (2011) 70-74.
  • [9] M. Sano, N. Unno, N. Yamamoto, H. Tanaka, H. Konno, Frequent fracture of TrapEase Inferior vena cava filters. Arch. Intern. Med. 172(2) (2011) 189-191.
  • [10] G. Rondelli, B. Vincentini, Localized corrosion behavior in simulated human body fluids of commercial Ni-Ti orthodontic wires. Biomaterials 20 (1999) 785-792.
  • [11] G. Rondelli, B. Vicentini, Evaluation by electrochemical tests of passive film stability of equiatomic Ni-Ti alloy also in the presence of stress induced martensite. J. Biomed. Mater. Res. 51 (2000) 47-54.
  • [12] B.G. Pound, Susceptibility of nitinol to localized corrosion. J. Biomed. Mater. Res. Part A 77A (2006) 185-191.
  • [13] B. Thierry, Y. Merhi, C. Trepanier, I. Bilodeau, L.H. Yahia, M. Tabrizian, Blood compatibility of nitinol compared to stainless steel. SMST-2000, Proceeding of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, USA, 2000, pp. 285-290.
  • [14] B. Thierry, M. Tabrizian, O. Savagodo, L’H. Yahia, Effect of sterilization process on NiTi alloy: Surface characterization. J. Biomed. Mater. Res. 49(1) (2000) 88-98.
  • [15] B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo, L.H. Yahia, Effect of surface treatment and sterilization processes on the behavior of NiTi shape memory alloy. J. Biomed. Mater. Res. 51 (2000) 685-693.
  • [16] O. Fukushima, T. Yoneyama, H. Doi, T. Hanawa, Corrosion resistance and surface characterization of electrolyzed Ti-Ni alloy. Dent. Mater. J. 25 (2006) 151-160.
  • [17] Z. Bai, H.H. Rotermund, The intrinsically high pitting corrosion resistance of mechanically polished nitinol in simulated physiological solutions. J. Biomed. Mater. Res. B: Appl. Biomater. 99(1) (2011)1-13.
  • [18] S. Plant, d. Grant, l. Leach, Behavior of human endothelial cells on surface modified NiTi alloy. Biomaterials 26 (2005) 5359-5367.
  • [19] S. Shabolovskaya, G.. Rondelli, J. Anderegg, J.P. Xiong, M. Wu, Comparative corrosion performance of black oxide, sandblasted, and fine-drawn nitinol wires in potentiodynamic and potentiostatic tests: Effects of etching and electropolishing. J. BioMat. Res. Part B, Appl. 69(2) (2004) 223-231.
  • [20] S. Shabalovskaya, J. Wataha, J. Anderegg, K. Hauch, J. Cunnick, Surface treatments and biocompatibility of nitinol. In: Proceedings of International Conference of shape memory and superelastic technologies. Germany:Baden-Baden, 2004, pp. 367-373.
  • [21] S.Shabalovskaya, J. Anderegg, J. van Humbeeck, Critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater. 4 (2008) 447-467.
  • [22] S. Shabalovskaya, J. Anderegg, G. Rondelli, W. Vanderlinden, S. De Feyter, Comparative in vitro performances of bare nitinol surfaces. Biomed. Mater. Eng. 18(1) (2008) 1-14.
  • [23] S. Shabalovskaya, J. Anderegg, J. van Humbeeck, Recent observation of particulates in nitinol. Materials Science and Engineering A 481-482 (2008) 431-436.
  • [24] S. Shabalovskaya, G. Rondelli, M. Rettenmayer, Nitinol surface for implantation. Journal of Materials Engineering and Performance 18(5-6) (2009) 470-474.
  • [25] V. Muhonen, Bone biomaterial interface. The effects of surface modified NiTi shape memory alloy on bone cell and tissue. 2008 PhD Thesis and Dissertations University of Oulu, Finland.
  • [26] V. Muhonen, C. Fauveaux, G. Olivera, P. Vigneron, A. Danilov, M.D. Nagel, J. Tuukkanen, Fibronectin modulates osteoblast behavior on Nitinol. Journal of Biomedical Materials Research A 88A(3) (2008) 787-796.
  • [27] J. Palmaz, A. Benson, E. Sprague, Influence of surface topography on endothelialization of intravascular metallic materials. J. Vasc. Interv. Radiol. 10 (1999) 439-444.
  • [28] C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. Jaffrezic-Renault, L. Ponsonnet, Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblast and osteoblast. Mater. Sci. Eng. C25 (2005) 51-60.
  • [29] S. Shabalovskaya, J. Anderegg, F. Laabs, P. Thiel, G. Rondelli, Surface conditions of Nitinol wires, tubing, and as-cast alloys: the effect of chemical etching, aging in boiling water and heat treatment. J. Biomed. Mater. Res. 65B (2003) 193-203.
  • [30] S. Shabalovskaya, J. Anderegg, J. Wataha, P. Adler, J. Cunnick, Effects of Nitinol surface treatments and ethylene oxide sterilization on Human Lymphocyte Proliferation. Journal of Materials Research, 2004; http://scholar.google.com/scholar?q=+Effects+of+Nitinol+surface++treatments+and+ethylene+oxide+sterilization+on+Human+Lymphocyte+Proliferation.+&btnG=&hl=en&as_sdt=0%2C39
  • [31] G. Firstov, R. Votchev, H. Kumar, B. Blanpain, J. van Humbeek, Surface oxidation of NiTi shape memory alloys. Biomaterials 23 (2002) 4863-4871.
  • [32] Michiardi, C. Aparicio, J. Planell, F. Gil, New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J. Biomed. Mat. Res. 77B (2006) 249-65.
  • [33] Michiardi, C. Aparicio, B.D. Ratner, J.A. Planell, J. Gil, The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials 28(4) (2007) 586-594.
  • [34] D. Vojtech, L. Joska, J. Leitner, Influence of a controlled oxidation at moderate temperatures on the surface chemistry of nitinol wire. Applied Surface Science 254 (2008) 5664-5669.
  • [35] D. Vojtech, J. Fojt, L. Joska, P. Novak, Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior. Surface & Coatings Technology, 204(2-3) (2010) 3895-3901.
  • [36] J. Lutz, J.K.N. Lindner, S. Mandl, Marker experiments to determined diffusing species and diffusion path in medical nitinol alloys. Appl. Surf. Sci. 255 (2008) 1107.
  • [37] H. Tian, D. Schryvers, S. Shabalovskaya, J. van Humbeeck, Microstructure of surface and sub-surface layers of a Ni-Ti shape memory microwire. Microsc. Microanal. Microscopy and Microanalysis 15(01) (2009) 62-70.
  • [38] Runciman, C. Chen, A. Pelton, C. Trepanier, Effects of hydrogen on the phases and transition temperatures of NiTi. (2006) Proceedings of the International Conference on Shape Memory and Superelastic Technologies: May7-11, 2006 Pacific Grove, CA, USA, B. Berg & R. Mitchell and J. Proft, editors: pp. 185-196.
  • [39] S. Shabalovskaya, G. Rondelli, A. Undisz, J. Anderegg, D. Burleigh, M. Rettenmayer, The electrochemical characteristic of native nitinol surfaces. Biomaterials 30 (2009) 3662-3671.
  • [40] S. Shabalovskaya, H. Tian, J. Anderegg, D. Schryvers, W. Caroll, J. van Humbeeck, The influence of surface oxides on the distribution and release of nickel from Nitinol wires. Biomaterials 30 (2009) 468-477.
  • [41] Heβing, J. Frenzel, M. Pohl, S. Shabolovskaya, Effect of martensitic transformation on the performance of coated NiTi surfaces. Mater. Sci. & Eng. A 486 (2008) 461-469.
  • [42] S. Shabalovskaya, J. Anderegg, Surface spectroscopic characterization of NiTi nearly equiatomic shape memory alloys for implants. Journal Vacuum Science Technology A13 (1995) 2624-2632.
  • [43] W. Simka, M. Kaczmarek, A. Baron-Wiechec, G. Nawrat, J. Marciniak, J. Żak, Electropolishing and passivation of NiTi shape memory alloy. Electrochimica Acta 55(7) (2010) 2437-2441.
  • [44] T.P. Hoar, J.A.S. Mowat, Mechanism of electropolishing. Nature, 165 (1950) 64-65.
  • [45] T. Hryniewicz, On Discrepancies Between Theory and Practice of Electropolishing. Materials Chemistry and Physics, 15(2) (1986) 139-154.
  • [46] T. Hryniewicz, and Z. Hryniewicz, On the solution of equations of diffusion presented in their paper “Diffusion and Solid-Film Formation during Electropolishing of Metals”, Journal of The Electrochemical Society, 136(12) (1989) 3767-3769.
  • [47] T. Hryniewicz, Concept of microsmoothing in the electropolishing process, Surface & Coatings Technology, 64(2) (1994) 5-80.
  • [48] R. Rokicki, T. Hryniewicz, Enhanced oxidation-dissolution theory of electropolishing. Transaction of the Institute of Metal Finishing 90(4) (2012) 188-196.
  • [49] ASTM F86, Standard Practice for Surface Preparation and Marking of Metallic Surgical Implants. Annual Book of Standards, ASTM, 2013; https://www.document-center.com/standards/show/ASTM-F86
  • [50] R. Steegmueller, T. Fleckenstain, A. Schuessler, Is electropolishing equal electropolishing? A comparison study for nitinol stents. Proceeding of the Materials & Processes for Medical Devices Conference, November 14-16, 2005, Boston, MA, USA.
  • [51] L. Neelakantan, M. Valtiner, G. Eggeler, A.S.W. Hassel, Surface Chemistry and Topographical Changes of an Electropolished NiTi shape memory alloy. Phys. Status Solidi A 207(4) (2010) 807-811.
  • [52] E.J. Taylor, M. Inman, T. Hall, B. Kagaywala, A. Lozano-Morales, Electropolishing of nitinol in HF-free aqueous electrolytes. 221st ECS Meeting, 2012 Abstract 989, The Electrochemical Society, http://ma.ecsdl.org/content/MA2012-01/24/989.short
  • [53] Y.G. Shen, L. Wang, H. Chen, P. Li, M. Yu, Q. Bai, J. Zhang, Yu. Lee Qingsong, Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomaterialia 5 (2009) 3593-3604.
  • [54] R.A. Yankov, N. Shevchenko, A. Rogozin, M.F. Maitz, E. Richter, W. Moller, A. Donchev, M. Schutze, Reactive plasma immersion ion implantation for surface passivation, Surface & Coatings Technology 201(15) (2007) 6752-6758.
  • [55] N. Levintant-Zayonts, S. Kucharski, Surface characterization and wear behavior of ion implanted NiTi shape memory alloy. Vacuum 83 (2009) S220–S223.
  • [56] C.F.B. Wolle, M.A.Z. Vacconcellos, R. Hinrichs, A.N. Becker, F.B. Barletta, The effect of argon and nitrogen ion implantation on nickel-titanium rotary instruments. J. Endodontics 35(11) (2009) 1558-1562.
  • [57] E. Rapisarda, A. Bonaccorso, T.R. Tripi, G.G. Condorelli, L. Torrisi, Wear of nickel-titanium endodontic instruments evaluated by scanning electron microscopy: effect of ion implantation. J. Endodontics 27 (2001) 588-592.
  • [58] M.F. Maitz, N. Shevchenko, Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood. J. Biomed. Mater. Res. A, 76(2) (2006) 356-365.
  • [59] Y. Cheng, C. Wei, K.Y. Gan, L.C. Zhao, Surface modification of NiTi alloy through Tantalum immersion ion implantation. Surface & Coatings Technology 176 (2004) 261-265.
  • [60] T. Zhao, Y. Li, Y. Liu, X. Zhao, Nano-hardness wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. Journal of the Mechanical Behavior of Biomedical Materials 13 (2012) 174-184.
  • [61] T. Zhao, Y. Li, X. Zhao, H. Chen, T. Zhang, Ni ion release, osteoblast–material interactions, and hemocompatibility of hafnium-implanted NiTi alloy. J. Biomed. / Mater. Res. Part B, 100B (2011) 646–659.
  • [62] L.L. Meisner, A.I. Lutkov, V.A. Matveeva, L.V. Artemieva, S.N. Meisner, A.L. Matveev, Effect of silicon, titanium and zirconium ion implantation on NiTi biocompatibility. Advances in Materials Science and Engineering 20(2) (2012), Article ID 706094, 16 pages http://dx.doi.org/10.1155/2012/706094
  • [63] H.J. Kim, J.H. Shin, D.H. Shin, M.W. Moon, K. Park, T.H. Kim, K.M. Shin, Y.H. Won, D.K. Han, K.R. Lee, Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model. Br. J. Radiol. 84(999) (2011) 210-215; DOI: 10.1259/bjr/21667521.
  • [64] H.J. Kim, M.W. Moon, K.R. Lee, H.K. Seok, S.H. Han, J.W. Ryu, K.M. Shin, K.H. Oh, Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading. Thin Solid Films 517 (2008) 1146–1150.
  • [65] D.O. Flamini, S.B. Saidman, Electrodeposition of polypyrrole onto NiTi and the corrosion behavior of the coated alloy. Corrosion Science 52 (2010) 229-234.
  • [66] J. Katić, M. Metikoš-Huković, R. Babić, M. Marciuš, Sol-gel Derived Biphasic Calcium Phosphate Ceramics on Nitinol for Medical Applications. Int. J. Electrochem. Sci. 8 (2013) 1394-1408.
  • [67] Zhang, Z. Zhang, Z. Zi, Y. Zhang, W. Zeng, P.K. Chu, Fabrication of graded TiN coatings on nitinol occluders and effects on in vivo nickel release, Bio-Medical Materials and Engineering, 18(6) (2008) 387-393; DOI: 10.3233/BME-2008-0555.
  • [68] R. Bakhshi, A. Darbyshire, J.E. Evans, Z. You, J. Lu, A.M. Seifalian, Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf. B: Biointerfaces 86(1) (2011) 93-105; DOI: 10.1016/j.colsurfb.2011.03.024.
  • [69] L. Vanessa, FDA approves Cook Medical’s Zilver PTX. First peripheral drug-eluting stent on the market. The Advisory Board Company, November 26, 2012. http://www.advisory.com/Research/Technology-Insights/The-Pipeline/2012/08/FDA-approves-Cook-Medicals-Zilver-PTX-first-peripheral drug-eluting-stent-on-the-market
  • [70] M.D. Dake, D. Scheinert, G. Tepe, J. Tessarek, F. Fanelli, M. Bosiers, C. Ruhlmann, Z. Kavteladze, A.E. Lottes, A.O. Ragheb, T. Zeller, Zilver PTX Single-Arm Study Investigators. Nitinol stents with polymer-free paclitaxel coating for lesions in the superficial femoral and popliteal arteries above the knee: twelve-month safety and effectiveness results from the Zilver PTX single-arm clinical study. J. Endovasc. Ther. 18(5) (2011) 613-623; DOI: 10.1583/11-3560.1.
  • [71] T. Duerig, A. Pelton, C. Trepanier, Nitinol. Part I. Mechanism and Behavior. Copyright © 2011 ASM International® This article is excerpted from a book-in-progress, tentatively titled Nitinol, being written by Tom Duerig, Alan Pelton, and Christine Trepanier. 2011, tom.duerig@nitinol.com
  • [72] W. Haider, Enhanced Biocompatibility of NiTi (Nitinol) via Surface Treatment and Alloying. FIU Electronic Theses and Dissertations, 2010, Paper 17 http://digitalcommons.fiu.edu/etd/177
  • [73] Pulletikurthi, N. Munroe, D. Stewart, W. Haider, S. Amruthaluri, R. Rokicki, M. Dugrot, S. Ramaswamy, J. Biomedical Materials Research 103(7) (2015) 1366-1374; https://doi.org/10.1002/jbm.b.33317
  • [74] S. Alavi, S.H. Raji, A.A. Ghorbani, Effects of steam and dry-heat sterilization on bending properties of NiTi wires. Orthodontic Waves 68(3) (2009) 123-128.
  • [75] L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C. Martelet, Relationship between surface properties (roughness, wetability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C, 23(4) (2003) 551-560.
  • [76] B. Groth, The effect of packaging and sterilization methods on NiTi. SMST 2000 Proceeding of The International Conference on Shape Memory Superelastic Technologies Eds. S.M. Russell, A.R. Pelton, 2000, 103-108.
  • [77] B.I. Pelton, J. Vitarelli, The effect of e-beam sterilization on the microstructure of NiTi Medical Devices. Proceedings of the International Conference on Shape Memory Superelastic Technologies SMST 2000 Ed., S.M. Russell and A.R. Pelton, 2001, pp. 97-102
  • [78] S.A. Smith, B. Gause, D. Plumley, M.J. Drexel, Irradiation-assisted stress-corrosion cracking of nitinol during e-beam sterilization. Journal of Materials Engineering and Performance 21(12) (2012) 2638-2642.
  • [79] P.Y.Z. O’Hoy, H.H. Messer, J.E.A. Palamara, The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int. Endod. J. 36(11) (2003) 724-732.
  • [80] F.O.G. Barbosa, A. Gomes, M.C. Pinenta de Araujo, Influence of sodium hypochlorite on mechanical properties of K3 nickel-titanium rotary instruments. J. Endodontics 33(8) (2007) 982-985.
  • [81] Y. Shen, W. Qian, H. Abtin, Y. Gao, M. Haapasalo, Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments. J. Endodontics 38(3) (2012) 376-380.
  • [82] O.A. Peters, J.O. Roehlike, M.A. Baumann, Effect of immersion in sodium hypochlorite on torque and fatigue resistance of nickel-titanium instruments. J. Endodontics 33 (5) (2007) 589-593
  • [83] J. Dash, W.W. King, Electrothinning and electrodeposition of metals in magnetic fields. J. The Electrochememical Society 119 (1972) 51-56.
  • [84] L. Li, W. Wang, C. Wang, S. Chen, Effects of applied magnetic field on the anodic dissolution of nickel in HNO3+ Clˉ solution. Electrochemistry Communication 11 (2009) 2109-2112.
  • [85] C. Wang, S. Chen, A study of the effect of magnetic fields on the diffusion layer at the Fe/H2SO4 interface by holographic microphotography, J. Serb. Chem. Soc. 66(7) (2001) 477-481
  • [86] R. Rokicki, Apparatus and method for enhancing electropolishing utilizing magnetic field. US Patent 7632390, December 15, 2009
  • [87] R. Rokicki, Method for Surface Inclusions Detection in Nitinol Which are Primary Corrosion and Fatigue Initiation Sites and Indicators of Overall Quality of Nitinol Material. US Patent 8377237, 2013
  • [88] T. Hryniewicz, R. Rokicki, K. Rokosz, Magnetoelectropolishing process improves characteristics of finished metal surfaces. Met. Finish. 104 (2006) 26-33; DOI: 10.1016/S0026-0576(06)80361-2
  • [89] R. Rokicki and T. Hryniewicz, Nitinol Surface Finishing by Magnetoelectropolishing, Trans. Instit. Met. Finish. 86(5) (2008) 280-285
  • [90] R. Rokicki, T. Hryniewicz, and K. Rokosz, Modifying Metallic Implants with Magnetoelectropolishing, Med. Device & Diagn. Ind. 30(1) (2008) 102-111 (INVITED PAPER)
  • [91] K. Rokosz, T. Hryniewicz, XPS measurements of passive film formed on AISI 316L SS after electropolishing in a magnetic field (MEP), Advances in Materials Sciences 12(4) (212) 13-20
  • [92] T. Hryniewicz, , K. Rokosz, R. Rokicki, Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in magnetic field. Corrosion Science 50 (2008) 2676-2681
  • [93] R. Rokicki, W. Haider, and T. Hryniewicz, Influence of Sodium Hypochlorite Treatment of Electropolished and Magnetoelectropolished Nitinol Surfaces on Adhesion and Proliferation of MC3T3 Preosteoblast Cells, J. Mater. Sci.: Materials in Medicine, 23(9) (2012) 2127-2139; DOI: 10.1007/s10856-012-4696-1
  • [94] T. Hryniewicz and K. Rokosz, On the Wear Inspection and Endurance Recovery of Nitinol Endodontic Files, PAK // Meas. Autom. Monit. 55(4) (2009) 247–250
  • [95] T. Hryniewicz, R. Rokicki, K. Rokosz, Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surf. & Coat. Technol. 23 (2009) 1508–1515; DOI: 10.1016/j.surfcoat.2008.11.028
  • [96] T. Hryniewicz, K. Rokosz, R. Rokicki, Surface Investigation of NiTi Rotary Endodontic Instruments after Magnetoelectropolishing. Mater. Res. Soc. Symp. Proc. Vol. 1244E - 2009 Materials Research Society, p 21–32, Symposium 9. Biomaterials (of XVIII International Materials Research Congress, Cancun, Mexico), 2009; ISBN 978-1-60511-221-3. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=24949&DID=280254
  • [97] T. Hryniewicz, R. Rokicki, K. Rokosz, Chapter 11: Magnetoelectropolished Titanium Biomaterial, in Biomaterials Science and Engineering, Ed. By Rosario Pignatello, 2011, 227-248, InTech Edition, ISBN 978-953-307-609-6
  • [98] T. Hryniewicz, K. Rokosz, J. Valiček, R. Rokicki, Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Materials Letters 83 (2012) 69-72.doi:10.1016/j.matlet.2012.06.010
  • [99] R. Rokicki, W. Haider, T. Hryniewicz, Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells. J. Mater.Sci.: Materials in Medicine 23 (2012) 2127–2139; DOI: 10.1007/s10856-012-4696-1
  • [100] T. Hryniewicz, K. Rokosz, R. Rokicki, Magnetic fields for electropolishing improvement: materials and systems. Intern. Lett. Chem. Phys. Astron. 4 (2014) 98–108.
  • [101] T. Hryniewicz, K. Rokosz, Highlights of Magnetoelectropolishing, Frontiers in Materials 1 (2014) 1-7, Article 3; DOI: 10.3389/fmats.2014.00003
  • [102] T. Hryniewicz, Introduction to Surface Finishing of Metallic Biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), Monograph No. 142, Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin 2007, ISSN 0239-7129; (155 pages)
  • [103] K. Rokosz, Electrochemical polishing of steels in the magnetic field (in Polish), book ed. at the Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin 2012 (210 pages)
  • [104] T. Hryniewicz, P. Konarski, R. Rokicki, J. Valíček, SIMS studies of titanium biomaterial hydrogenation after magnetoelectropolishing, Surface & Coatings Technology 206 (2012) 4027-4031; DOI: 10.1016/j.surfcoat.2012.03.083
  • [105] T. Hryniewicz, R. Rokicki, On the Nitinol properties improvement after electrochemical treatments, World Scientific News 95 (2018) 52-63
  • [106] T. Hryniewicz, P. Konarski, R. Rokicki, Hydrogen reduction in MEP Niobium studied by secondary ion mass spectrometry (SIMS), Metals 7(10) (2017) 442 (19 pages); DOI:10.3390/met7100442
  • [107] R. Rokicki, T. Hryniewicz, P. Konarski, K. Rokosz, The alternative, novel technology for improvement of surface finish of SRF niobium cavities, World Scientific News 74 (2017) 152-163
  • [108] T. Hryniewicz, K. Rokosz, S. Gaiaschi, P. Chapon, R. Rokicki, D. Matysek, GDOES analysis of niobium de-hydrogenation after electropolishing processes, Materials Letters 218 (2018) 299-304; DOI: 10.1016/j.matlet.2018.02.027
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-346e1249-0c4f-49c4-85ca-3d764cb653f2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.