Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2022 | 44 | 333-354

Article title

Mechanism of Action of Chaperones in Protein Function


Title variants

Languages of publication



The building blocks of living cells, proteins are enormous collections of nitrogenous organic molecules that are polymers of the amino acids that animals must consume to grow and repair their tissues. ATP-dependent proteins known as chaperones serve as foldases (protein folding assistants), holdases (bind folding intermediates), and disaggregates (convert aberrant protein to monomers). Chaperones include, but are not limited to, DnaJ, DnaK, GrpE, and Hsp33. The majority of chaperones have a cleft containing the nucleotide-binding site that divides the ATPase domain into two subdomains. The features of the C-terminal domain depend on the kind of bound nucleotide. In the presence of ATP, peptides bind and dissociate quickly and with low affinity. In contrast, the affinity increases significantly while the rate of peptide binding reduces when neither ADP nor nucleotide are connected to the N-terminal domain. Hsp90 is a homodimer with a 60 n dissociation constant. In reaction to high temperature or other types of cellular stress that prevent protein folding, several chaperones turn on their activity. Neurodegenerative, Parkinson's, and polyQ diseases, among others, can all be treated with chaperones. This is possible when a protein prevents the accumulation of protein species with improper folding. The suppression of dangerous protein oligomers by clustering, illness response related to protein aggregation, and cancer maintenance are a few new functions for chaperones that are still being discovered.







Physical description


  • Department of Biochemistry, Federal University of Technology Minna, Niger State, Nigeria
  • Department of Pure and Applied Chemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Osun State, Nigeria
  • Department of Biochemistry, Kwara State University, Kwara State, Nigeria


  • [1] Adesola, R. O., Waheed, S. A., & Abodunrin, L. (2022). Coronavirus: The Hidden Truth. World News of Natural Sciences, 43, 38-59
  • [2] Bauer, P. O., & Nukina, N. (2009). The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. Journal of Neurochemistry, 110(6), 1737-1765
  • [3] Beck, R., Dejeans, N., Glorieux, C., C Pedrosa, R., Vásquez, D., A Valderrama, J., ... & Verrax, J. (2011). Molecular chaperone Hsp90 as a target for oxidant-based anticancer therapies. Current medicinal chemistry, 18(18), 2816-2825
  • [4] Berke, S. J. S., & Paulson, H. L. (2003). Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Current opinion in genetics & development, 13(3), 253-261
  • [5] Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature, 371(6498), 578-586
  • [6] Brown, I. R. (2007). Heat shock proteins and protection of the nervous system. Annals of the New York Academy of Sciences, 1113(1), 147-158
  • [7] Bruckdorfer, T., Marder, O., & Albericio, F. (2004). From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Current pharmaceutical biotechnology, 5(1), 29-43
  • [8] Buchner, J. (1996). Supervising the fold: functional principles of molecular chaperones. The FASEB Journal, 10(1), 10-19
  • [9] Bukau, B., Weissman, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125(3), 443-451
  • [10] Chai, Y., Koppenhafer, S. L., Bonini, N. M., & Paulson, H. L. (1999). Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. Journal of Neuroscience, 19(23), 10338-10347
  • [11] Chaudhuri, T. K., Farr, G. W., Fenton, W. A., Rospert, S., & Horwich, A. L. (2001). GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell, 107(2), 235-246
  • [12] Chen, S., & Brown, I. R. (2007). Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell stress & chaperones, 12(1), 51
  • [13] Colón, W., Wakem, L. P., Sherman, F., & Roder, H. (1997). Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Biochemistry, 36(41), 12535-12541
  • [14] Craig, E. A., & Yan, P. J. (1999). Molecular Chaperones and Folding-Catalysts, Ed: Bukau, B. Harwood.
  • [15] Cummings, C. J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., Orr, H. T., ... & Zoghbi, H. Y. (2001). Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Human molecular genetics, 10(14), 1511-1518
  • [16] Cwiklinska, H., Mycko, M. P., Luvsannorov, O., Walkowiak, B., Brosnan, C. F., Raine, C. S., & Selmaj, K. W. (2003). Heat shock protein 70 associations with myelin basic protein and proteolipid protein in multiple sclerosis brains. International immunology, 15(2), 241-249
  • [17] Davis, K.L.; Samuels, S.C. Pharmacological Management of Neurological and Psychiatric Disorders; E, Enna, S.J., Coyle, J.T., Eds.; (1998) McGraw-Hill Health Professions Division: New York, NY, USA. pp. 267-316
  • [18] De Marco, A. (2007). Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nature protocols, 2(10), 2632-2639
  • [19] Dedmon, M. M., Christodoulou, J., Wilson, M. R., & Dobson, C. M. (2005). Heat shock protein 70 inhibits α-synuclein fibril formation via preferential binding to prefibrillar species. Journal of Biological Chemistry, 280(15), 14733-14740
  • [20] Ehrnsperger, M., Gräber, S., Gaestel, M., & Buchner, J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. The EMBO Journal, 16(2), 221-229
  • [21] Ellis, R. J. (2001). Macromolecular crowding: obvious but underappreciated. Trends in biochemical sciences, 26(10), 597-604
  • [22] Ellis, R. J., & Hartl, F. U. (1999). Principles of protein folding in the cellular environment. Current opinion in structural biology, 9(1), 102-110
  • [23] Evans, C. G., Wisén, S., & Gestwicki, J. E. (2006). Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1–42) aggregation in vitro. Journal of Biological Chemistry, 281(44), 33182-33191
  • [24] Fayet, O., Ziegelhoffer, T., & Georgopoulos, C. (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. Journal of bacteriology, 171(3), 1379-1385
  • [25] Fayet, O., Ziegelhoffer, T., & Georgopoulos, C. (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. Journal of bacteriology, 171(3), 1379-1385
  • [26] Febbraio, M. A., Ott, P., Nielsen, H. B., Steensberg, A., Keller, C., Krustrup, P., ... & Pedersen, B. K. (2002). Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. The Journal of physiology, 544(3), 957-962
  • [27] Fenton, W. A., & Horwich, A. L. (1997). GroEL-mediated protein folding. Protein science: a publication of the Protein Society, 6(4), 743
  • [28] Fenton, W. A., Kashi, Y., Furtak, K., & Norwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614-619
  • [29] Fernández, A., & Scott, R. (2003). Dehydron: a structurally encoded signal for protein interaction. Biophysical journal, 85(3), 1914-1928
  • [30] Flaherty, K. M., DeLuca-Flaherty, C., & McKay, D. B. (1990). Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346(6285), 623-628
  • [31] Fonte, V., Kipp, D. R., Yerg, J., Merin, D., Forrestal, M., Wagner, E., ... & Link, C. D. (2008). Suppression of in vivo β-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. Journal of Biological Chemistry, 283(2), 784-791
  • [32] Forman, M. S., Trojanowski, J. Q., & Lee, V. M. (2004). Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature medicine, 10(10), 1055-1063
  • [33] Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., Rodríguez-Carmona, E., Baumann, K., ... & Villaverde, A. (2008). Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial cell factories, 7(1), 1-18
  • [34] Goloubinoff, P., Mogk, A., Zvi, A. P. B., Tomoyasu, T., & Bukau, B. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proceedings of the National Academy of Sciences, 96(24), 13732-13737
  • [35] Gunawardena, S., Her, L. S., Brusch, R. G., Laymon, R. A., Niesman, I. R., Gordesky-Gold, B., ... & Goldstein, L. S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron, 40(1), 25-40
  • [36] Han, K. G., Lee, S. S., & Kang, C. (1999). Soluble Expression of Cloned Phage K11 RNA Polymerase Gene inEscherichia coliat a Low Temperature. Protein expression and purification, 16(1), 103-108
  • [37] Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., ... & Buchner, J. (1999). Hsp26: a temperature-regulated chaperone. The EMBO Journal, 18(23), 6744-6751
  • [38] Henderson, B. (2010). Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 28(1), 1-14
  • [39] Herges, T., & Wenzel, W. (2005). In silico folding of a three helix protein and characterization of its free-energy landscape in an all-atom force field. Physical Review Letters, 94(1), 018101
  • [40] Hoffmann, M., Wanko, M., Strodel, P., König, P. H., Frauenheim, T., Schulten, K., ... & Elstner, M. (2006). Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. Journal of the American Chemical Society, 128(33), 10808-10818
  • [41] Hsu, A. L., Murphy, C. T., & Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 300(5622), 1142-1145
  • [42] Hu, B., Mayer, M. P., & Tomita, M. (2006). Modeling Hsp70-mediated protein folding. Biophysical Journal, 91(2), 496-507
  • [43] Hu, X., O’Hara, L., White, S., Magner, E., Kane, M., & Wall, J. G. (2007). Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support. Protein expression and purification, 52(1), 194-201
  • [44] Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., & Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature, 379(6560), 37-45
  • [45] Jackson, G. S., Staniforth, R. A., Halsall, D. J., Atkinson, T., Holbrook, J. J., Clarke, A. R., & Burston, S. G. (1993). Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry, 32(10), 2554-2563
  • [46] Jakob, U., Lilie, H., Meyer, I., & Buchner, J. (1995). Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase: implications for heat shock in vivo. Journal of Biological Chemistry, 270(13), 7288-7294
  • [47] Jana, N. R., Tanaka, M., Wang, G. H., & Nukina, N. (2000). Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Human Molecular Genetics, 9(13), 2009-2018
  • [48] Kandror, O., Sherman, M., Moerschell, R., & Goldberg, A. L. (1997). Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. Journal of Biological Chemistry, 272(3), 1730-1734
  • [49] Kędzierska, S., Staniszewska, M., Węgrzyn, A., & Taylor, A. (1999). The role of DnaK/DnaJ and GroEL/GroES systems in the removal of endogenous proteins aggregated by heat-shock from Escherichia coli cells. FEBS Letters, 446(2-3), 331-337
  • [50] Kent, S. B. (2009). Total chemical synthesis of proteins. Chemical Society Reviews, 38(2), 338-351
  • [51] Kiefhaber, T., Rudolph, R., Kohler, H. H., & Buchner, J. (1991). Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Bio/technology, 9(9), 825-829
  • [52] Kroeger, P. E., & Morimoto, R. I. (1994). Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Molecular and Cellular Biology, 14(11), 7592-7603
  • [53] Kroeger, P. E., Sarge, K. D., & Morimoto, R. I. (1993). Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Molecular and Cellular Biology, 13(6), 3370-3383
  • [54] Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M. K., & Hartl, F. U. (1992). Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356(6371), 683-689
  • [55] Le, W., & Appel, S. H. (2004). Mutant genes responsible for Parkinson’s disease. Current opinion in pharmacology, 4(1), 79-84
  • [56] Li, H. M., Niki, T., Taira, T., Iguchi-Ariga, S. M., & Ariga, H. (2005). Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radical Research, 39(10), 1091-1099
  • [57] Lin, Z., Schwarz, F. P., & Eisenstein, E. (1995). The Hydrophobic Nature of GroEL-Substrate Binding (∗). Journal of Biological Chemistry, 270(3), 1011-1014
  • [58] Maresca, B., & Lindquist, S. (Eds.). (2012). Heat shock. Springer Science & Business Media
  • [59] Margolin, W. (2000). Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods, 20(1), 62-72
  • [60] Martínez-Alonso, M., Toledo-Rubio, V., Noad, R., Unzueta, U., Ferrer-Miralles, N., Roy, P., & Villaverde, A. (2009). Rehosting of bacterial chaperones for high-quality protein production. Applied and environmental microbiology, 75(24), 7850-7854
  • [61] Mayhew, M., da Silva, A. C., Martin, J., Erdjument-Bromage, H., Tempst, P., & Hartl, F. U. (1996). Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature, 379(6564), 420-426
  • [62] McGeer, P. L., & McGeer, E. G. (2007). NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiology of Aging, 28(5), 639-647
  • [63] McLean, P. J., Kawamata, H., Shariff, S., Hewett, J., Sharma, N., Ueda, K., ... & Hyman, B. T. (2002). TorsinA and heat shock proteins act as molecular chaperones: suppression of α‐synuclein aggregation. Journal of Neurochemistry, 83(4), 846-854
  • [64] Meriin, A. B., & Sherman, M. Y. (2005). Role of molecular chaperones in neurodegenerative disorders. International journal of hyperthermia, 21(5), 403-419
  • [65] Michelini, E. T., & Flynn, G. C. (1999). The unique chaperone operon of Thermotoga maritima: cloning and initial characterization of a functional Hsp70 and small heat shock protein. Journal of bacteriology, 181(14), 4237-4244
  • [66] Morimoto, R. I. (1993). Cells in stress: transcriptional activation of heat shock genes. Science, 259(5100), 1409-1410
  • [67] Morishima, Y., Murphy, P. J., Li, D. P., Sanchez, E. R., & Pratt, W. B. (2000). Stepwise assembly of a glucocorticoid receptor· hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. Journal of Biological Chemistry, 275(24), 18054-18060
  • [68] Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews Neuroscience, 6(1), 11-22
  • [69] Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer-Hartl, M. K., & Hartl, F. U. (2000). Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proceedings of the National Academy of Sciences, 97(14), 7841-7846
  • [70] Newkome, G. R., Moorefield, C. N., Baker, G. R., Behera, R. K., Escamillia, G. H., & Saunders, M. J. (1992). Supramolecular Self‐Assemblies of Two‐Directional Cascade Molecules: Automorphogenesis. Angewandte Chemie International Edition in English, 31(7), 917-919
  • [71] Nunes, R. B., Tonetto, M., Machado, N., Chazan, M., Heck, T. G., Veiga, A. B. G., & Dall'Ago, P. (2008). Physical exercise improves plasmatic levels of IL-10, left ventricular end-diastolic pressure, and muscle lipid peroxidation in chronic heart failure rats. Journal of applied physiology, 104(6), 1641-1647
  • [72] Oishi, Y., Taniguchi, K., Matsumoto, H., Kawano, F., Ishihara, A., & Ohira, Y. (2003). Upregulation of HSP72 in reloading rat soleus muscle after prolonged hindlimb unloading. The Japanese journal of physiology, 53(4), 281-286
  • [73] Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological reviews, 88(4), 1379-1406
  • [74] Pedersen, B. K., & Toft, A. D. (2000). Effects of exercise on lymphocytes and cytokines. British journal of sports medicine, 34(4), 246-251
  • [75] Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., ... & Hutton, M. (2004). CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human molecular genetics, 13(7), 703-714
  • [76] Pratt, W. B., & Toft, D. O. (1997). Steroid Receptor Interactions with Heat Shock Protein and Immunophilin Chaperones [[sup.*]]. Endocrine Reviews, 18(3), 306-361
  • [77] Prusiner, S. B. (1998). Prions. Proceedings of the National Academy of Sciences, 95(23), 13363-13383
  • [78] Renkawek, K., Bosman, G. I. C. G. M., & De Jong, W. W. (1994). Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta neuropathologica, 87(5), 511-519
  • [79] Rinas, U., Hoffmann, F., Betiku, E., Estapé, D., & Marten, S. (2007). Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Journal of Biotechnology, 127(2), 244-257
  • [80] Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., & Santoro, M. G. (2000). Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature, 403(6765), 103-108
  • [81] Rye, H. S., Burston, S. G., Fenton, W. A., Beechem, J. M., Xu, Z., Sigler, P. B., & Horwich, A. L. (1997). Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature, 388(6644), 792-798
  • [82] Saibil, H., Dong, Z., Wood, S., & Mauer, A. A. D. (1991). Binding of chaperonins. Nature, 353(6339), 25-26
  • [83] Salo, D. C., Donovan, C. M., & Davies, K. J. (1991). HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radical Biology and Medicine, 11(3), 239-246
  • [84] Sarge, K. D., Park-Sarge, O. K., Kirby, J. D., Mayo, K. E., & Morimoto, R. I. (1994). Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biology of Reproduction, 50(6), 1334-1343
  • [85] Schmidt, B., Rahfeld, J., Schierhorn, A., Ludwig, B., Hacker, J., & Fischer, G. (1994). A homodimer represents an active species of the peptidyl‐prolyl cis/trans isomerase FKBP25mem from Legionella pneumophila. FEBS Letters, 352(2), 185-190
  • [86] Schwarzer, D., & Cole, P. A. (2005). Protein semisynthesis and expressed protein ligation: chasing a protein's tail. Current opinion in chemical biology, 9(6), 561-569
  • [87] Selkoe, D. J. (2004). Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature Cell Biology, 6(11), 1054-1061
  • [88] Selye, H. (1976). Forty years of stress research: principal remaining problems and misconceptions. Canadian Medical Association Journal, 115(1), 53
  • [89] Shimura, H., Miura-Shimura, Y., & Kosik, K. S. (2004). Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. Journal of Biological Chemistry, 279(17), 17957-17962
  • [90] Siderowf, A., & Stern, M. (2003). Update on Parkinson disease. Annals of Internal Medicine, 138(8), 651-658
  • [91] Sistonen, L., Sarge, K. D., & Morimoto, R. I. (1994). Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Molecular and cellular biology, 14(3), 2087-2099
  • [92] Soltys, B. J., & Gupta, R. S. (1994). Presence and cellular distribution of a 60-kDa protein related to mitochondrial hsp60 in Giardia lamblia. The Journal of parasitology, 580-590
  • [93] Sørensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial cell factories, 4(1), 1-8.
  • [94] Standley, D. M., Kinjo, A. R., Kinoshita, K., & Nakamura, H. (2008). Protein strcture databases with new web services for structural biology and biomedical research. Briefings in Bioinformatics, 9(4), 276-285
  • [95] Sun, A. L., Hua, Z. C., Yao, J., Yang, Y. H., & Yin, D. Q. (1998). Fusion expression of human pro‐urokinase with E. coli thioredoxin. IUBMB Life, 46(3), 479-486
  • [96] Thirumalai, D., & Lorimer, G. H. (2001). Chaperonin-mediated protein folding. Annual review of biophysics and biomolecular structure, 30(1), 245-269
  • [97] Tissiéres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of molecular biology, 84(3), 389-398
  • [98] Touchberry, C., Le, T., Richmond, S., Prewitt, M., Beck, D., Carr, D., ... & Gallagher, P. (2008). Diathermy treatment increases heat shock protein expression in female, but not male skeletal muscle. European journal of applied physiology, 102(3), 319-323
  • [99] Villaverde, A., & Mar Carrió, M. (2003). Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnology Letters, 25(17), 1385-1395
  • [100] Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., & Bonini, N. M. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell, 93(6), 939-949
  • [101] Widlak, W., Vydra, N., Malusecka, E., Dudaladava, V., Winiarski, B., Ścieglińska, D., & Widlak, P. (2007). Heat shock transcription factor 1 down‐regulates spermatocyte‐specific 70 kDa heat shock protein expression prior to the induction of apoptosis in mouse testes. Genes to Cells, 12(4), 487-499
  • [102] Wiech, H., Buchner, J., Zimmermann, R., & Jakob, U. (1992). Hsp90 chaperones protein folding in vitro. Nature, 358(6382), 169-170
  • [103] Wilhelmus, M. M. M., Otte‐Höller, I., Wesseling, P., De Waal, R. M. W., Boelens, W. C., & Verbeek, M. M. (2006). Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathology and applied neurobiology, 32(2), 119-130
  • [104] Wyttenbach, A., Sauvageot, O., Carmichael, J., Diaz-Latoud, C., Arrigo, A. P., & Rubinsztein, D. C. (2002). Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Human molecular genetics, 11(9), 1137-1151
  • [105] Yang, Y., Turner, R. S., & Gaut, J. R. (1998). The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Aβ40 and Aβ42 secretion. Journal of Biological Chemistry, 273(40), 25552-25555
  • [106] Yoo, B. C., Seidl, R., Cairns, N., & Lubec, G. (1999). Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer’s disease. In The Molecular Biology of Down Syndrome (pp. 315-322). Springer, Vienna.
  • [107] Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272(5268), 1606-1614
  • [108] Ziegler, T. R., Ogden, L. G., Singleton, K. D., Luo, M., Fernandez-Estivariz, C., Griffith, D. P., ... & Wischmeyer, P. E. (2005). Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Medicine, 31(8), 1079-1086

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.