Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 37 | 164-181

Article title

Lignocellulosic biomass as potent feedstock resource for bioethanol production: Recent updates

Content

Title variants

Languages of publication

EN

Abstracts

EN
Non-renewable fossil fuels are unable to fulfil today`s requirements of the societies in terms of energy requirements. The increasing demands for energy have emphasized the researchers to search for alternative sources of energy. Among distinct alternative energy resources, bioethanol has attracted an immense attention worldwide. Currently, lignocellulosic biomasses are considered as the largest renewable resources for the production of bioethanol due to its maximum abundance on the earth. Pre-treated lignocellulosic biomasses are converted into bioethanol by both direct microbial conversion and hydrolysis process along with fermentation. Immobilization and nanotechnology have shown effective roles in the improvement of bioethanol from lignocellulosic biomasses. This review focuses on recent developments in bioethanol production from varied lignocellulosic biomasses as cheep feedstock.

Year

Volume

37

Pages

164-181

Physical description

Contributors

author
  • Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai - 600034, Tamil Nadu, India
author
  • Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai - 600034, Tamil Nadu, India
author
  • Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai - 600034, Tamil Nadu, India

References

  • [1] Aarti C and Khusro A (2015). Discovery of polygalacturonase producing Bacillus tequilensis strain ARMATI using 16S rRNA gene sequencing. Asian J. Pharm. Clin. Res. 8, 58-62
  • [2] Aarti C, Khusro A, Agastian P (2017). Goat dung as a feedstock for hyper‑production of amylase from Glutamicibacter arilaitensis strain ALA4. Bioresour. Bioprocess. 4, 43
  • [3] Aarti C, Khusro A, Agastian P (2018). Carboxymethyl cellulase production optimization from Glutamicibacter arilaitensis strain ALA4 and its application in lignocellulosic waste biomass saccharification. Prep. Biochem. Biotechnol. 48, 853-866
  • [4] Aarti C, Khusro A, Agastian P, Darwish NM, Al Farraj DA (2020). Molecular diversity and hydrolytic enzymes production abilities of soil bacteria. Saudi J. Biol. Sci. 27, 3235-3248
  • [5] Abraham RE, Verma ML, Barrow CJ, Puri M (2014). Suitability of magnetic nanoparticles immobilized cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol. Biofuels 7, 90
  • [6] Adelabu BA, Kareem SO, Oluwafemi F, Adeogun IA (2019). Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. J. King Saud Univ. Sci. 31, 136-141
  • [7] Ahmed SA, Ramadan AA, Domany NM, Hesham HR, Shireen AS (2008). Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res. J. Agric. Biol. Sci. 4, 434-446
  • [8] Akhtar N, Iqbal J, Iqbal M (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108, 85-94
  • [9] Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016). Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew. Energy 98, 23-28
  • [10] Bibra M, Kunreddy VR, Sani RK (2018). thermostable xylanase production by Geobacillus sp. strain DUSELR13, and its application in ethanol production with lignocellulosic biomass. Microorganisms 5, 93
  • [11] Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2017). Biotransformation of lignocellulosic materials into value-added products - A review. Int. J. Biol. Macromol. 98, 447-458
  • [12] Branco RH, Serafim LS, Xavier AM (2019). Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock. Fermentation 5, 4
  • [13] Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Šantek MI, et al. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol. 56, 289-311
  • [14] Chaturvedi S, Dave PN, Shah NK (2012). Application of nano-catalyst in new era. J. Saudi Chem. Soc. 16, 307-325
  • [15] Cheng JJ, Stomp AM (2009). Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. CLEAN Soil Air Water 37, 17-26
  • [16] Cheng MH, Wang Z, Dien BS, Slininger PJ, Singh V (2019). Economic analysis of cellulosic ethanol production from sugarcane bagasse using a sequential deacetylation, hot water and disk-refining pretreatment. Processes 7, 642
  • [17] Cherian E, Dharmendirakumar M, Baskar G (2015). Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese J. Catal. 36, 1223-1229
  • [18] da Silva FL, Campos AO, Santos DA, Magalhães ERB, Macedo GR, Santos ES (2018). Valorization of an agroextractive residue-Carnauba straw-for the production of bioethanol by simultaneous saccharification and fermentation (SSF). Renew. Energy 127, 661-669
  • [19] Das A, Ghosh P, Paul T, Ghosh U, Pati BR, Mondal KC (2016). Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech 6, 1-9
  • [20] Das S, Bhattacharya A, Haldar S, Ganguly A, Gu YPS, Ting PK, et al. (2015). Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17-28
  • [21] Debajyoti Bose, Divyesh Arora, Aditya Mekala, (2015). On the effect of hydrothermal pretreatment of biomass and catalytic conversion mechanism in pyrolysis process with a review of flash pyrolysis of lignocellulosic biomass using effective catalyst. World Scientific News 10, 88-100
  • [22] Dhiman SS, David A, Braband VW, Hussein A, Salem DR, Sani RK (2017). Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery. Appl. Energy 208, 1420-1429
  • [23] Dimos K, Paschos T, Louloudi A, Kalogiannis KG, Lappas AA, Papayannakos N, et al. (2019). Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5, 5
  • [24] Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 3, 31
  • [25] Dussán KJ, Justo OR, Perez VH, David GF, Junior EGS, da Silva SS (2019). Bioethanol production from sugarcane bagasse hemicellulose hydrolysate by immobilized S. shehatae in a fluidized bed fermenter under magnetic field. Bioenerg. Res. 12, 338-346
  • [26] Eiadpum A, Limtong S, Phisalaphong M (2012). High-temperature ethanol fermentation by immobilized co culture of Kluyveromyces marxianus and Saccharomyces cerevisiae. J. Biosci. Bioeng. 114, 325-329
  • [27] Elbashiti T, Alkafarna A, Elkahlout K (2017). Bioethanol production by immobilized Saccharomyces cerevisiae using different lignocellulosic materials. IUG J. Nat. Stud. 25, 30-39
  • [28] El-Dalatony MM, Kurade MB, Abou-Shanab RAI, Kim H, Salama ES, Jeon BH (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour. Technol. 219, 98-105
  • [29] Erakhrumen, A. A., S. L. Larinde, P. O Aronmwan, (2018). Anatomical Features of Lignocellulosic Tissues from Underground Rhizomes of Thaumatococcus daniellii (Benn.) Benth. in a Rainforest Zone of Nigeria. World News of Natural Sciences 18(2), 106-113
  • [30] Fernandes MC, Ferro MD, Paulino AFC, Mendes JAS, Gravitis J, Evtuguin DV, et al. (2015). Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour. Technol. 186, 309-315
  • [31] Ferreira V, de Oliveira FM, da Silva MS, Pereira JN (2010). Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisiae harbouring the β-glucosidase gene. Electron. J. Biotechnol. 13, 5-6
  • [32] García EDA, Khusro A, Pacheco EBF, Adegbeye MJ, Barbabosa-Pliego A, Cruz Lagunas B, et al (2019). Influence of dietary supplementation of ensiled devil fish and Staphylococcus saprophyticus on equine fecal greenhouse gases production. J. Equine Vet. Sci. 79, 105-112
  • [33] Hartmann M, Kostrov X (2013). Immobilization of enzymes on porous silicas: benefits and challenges. Chem. Soc. Rev. 42, 6277-6289
  • [34] Hermanova S, Zarevucka M, Bousa D, Pumera M, Sofer Z (2015). Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 7, 5852-5858
  • [35] Hong SJ, Kim HJ, Kim JW, Lee DH, Seo JH (2015). Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase. Bioproc. Biosyst. Eng. 38, 263-272
  • [36] Huang PJ, Chang KL, Hsieh JF, Chen ST (2015). Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. Biomed Res. Int. 2015, 409103
  • [37] Huang W (2015). An integrated biomass production and conversion process for sustainable bioenergy. Sustainability 7, 522-536
  • [38] Husain Q (2017). Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis 3, 37-53
  • [39] Ingle AP, Rathod J, Pandit R, da Silva SS, Rai M (2017). Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose 24, 5529-5540
  • [40] Ita, R. E. (2020). Differential Biomass Apportionments and Carbon Stocks in Vegetation of Natural and Artificial Ecosystems in Akwa Ibom State, Nigeria. World Scientific News 146, 1-21
  • [41] Ivanova V, Petrova P, Hristov J (2011). Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int. Rev. Chem. Eng. 3, 289-299
  • [42] Jordan J, Kumar CSSR, Theegala C (2011). Preparation and characterization of cellulase-bound magnetite nanoparticles. J. Mol. Catal. B Enzym. 68, 139-146
  • [43] Kakaei K, Rahimi A, Husseindoost S, Hamidi M, Javan H, Balavandi A (2016). Fabrication of Pt-CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. Int. J. Hydrogen Energy 41, 3861-3869
  • [44] Karagoz P, Bill RM, Ozkan M (2019). Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations. Renew. Energy 143, 741-752
  • [45] Keshav PK, Chandrasekhar Banoth C, Archana Anthappagudem A, Venkateswar Rao Linga VR, Bhima Bhukya B (2018). Sequential acid and enzymatic saccharification of steam exploded cotton stalk and subsequent ethanol production using Scheffersomyces stipitis NCIM 3498. Ind. Crops Prod. 125, 462-467
  • [46] Khaliq AD, Chafidz A, Lukman MA, Kholil I (2020). Making of bioethanol banana weevil as renewable energy. IOP Conf. Ser.: Mater. Sci. Eng. 722, 012080
  • [47] Khusro A (2015). Statistical approach for optimization of independent variables on alkali-thermo stable protease production from Bacillus licheniformis strain BIHPUR 0104. Electron. J. Biol. 11, 93-97
  • [48] Khusro A (2016). One Factor at A Time based optimization of protease from poultry associated Bacillus licheniformis. J. Appl. Pharm. Sci. 6, 88-95
  • [49] Khusro A, Aarti C (2015). Molecular identification of newly isolated Bacillus strains from poultry farm and optimization of process parameters for enhanced production of extracellular amylase using OFAT method. Res. J. Microbiol. 10, 393-420
  • [50] Khusro A, Aarti C, Agastian P (2020a). Microwave irradiation-based synthesis of anisotropic gold nanoplates using Staphylococcus hominis as reductant and its optimization for therapeutic applications. J. Environ. Chem. Eng. 8, 104526
  • [51] Khusro A, Aarti C, Agastian P (2020b). Production and purification of anti-tubercular and anticancer protein from Staphylococcus hominis under mild stress condition of Mentha piperita L. J. Pharm. Biomed. Anal.182, 113136
  • [52] Kim J, Grate JW, Wang P (2006). Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017-1026
  • [53] Kim YK, Lee H (2016). Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour. Technol. 204, 139-144
  • [54] Kim YK, Park SE, Lee H, Yun JY (2014). Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour. Technol. 159, 446-450
  • [55] Kiran B, Kumar R, Deshmukh D (2014). Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers. Manage. 88, 1228-1244
  • [56] Kirti, Ravikumar S. Patil, Ramesh L. Londonkar, Bioethanol production from agro waste – Pigeon pea (Cajanus cajan (L.) Millsp.) stalk using solid state fermentation. World Scientific News 117 (2019) 59-81
  • [57] Kollah B, Patra AK, Mohanty SR (2016). Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ. Sci. Pollut. Res. Int. 23, 4358-4369
  • [58] Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013). Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135, 150-156
  • [59] Landolt E, Kandeler R (1987). The family of Lemnaceae – a monographic study. Vol. 2. Phytochemistry, physiology, application, bibliography. Veroffentlichungen des Geobotanischen Institutes ETH, Stiftung Rubel, Zurich, Switzerland.
  • [60] Lara-Serrano M, Sáez Angulo F, Negro MAJ, Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018). Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sust. Chem. Eng. 6, 7086-7095
  • [61] Lin L, Liu T, Zhang Y, Liang X, Sun R, Zeng W, et al (2016). Enhancing ethanol detection by heterostructural silver nanoparticles decorated polycrystalline zinc oxide nanosheets. Ceram. Int. 42, 3138-3144
  • [62] Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YJ (2014). Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol. Biofuels 7, 167
  • [63] Magdum SS, Sandeep MM, Aiya AN (2012). Biochemical conversion of acid pretreated water hyacinth (Eichhornia crassipes) to alcohol using Pichia stipitis NCIM 3497. Int. J. Adv. Biotechnol. Res. 3, 585-590
  • [64] Malveaux C (1995). Coastal plants for biofuel production and coastal preservation. Thesis, Louisiana State University, USA.
  • [65] Martins SC, Martins CM, Fiuza CF, Santaella ST (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. Afr. J. Biotechnol. 12, 4412-4418
  • [66] Miao X, Pi L, Fang L, Wu R, Xiong C (2016). Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase. Biocatal. Biotransform. 34, 272-282
  • [67] Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, et al. (2016). Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol. Biofuels 9, 221.
  • [68] Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M (2008). Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 99, 2495-2500
  • [69] Mishra A, Ghosh S (2019). Bioethanol production from various lignocellulosic feedstocks by a novel “fractional hydrolysis” technique with different inorganic acids and co-culture fermentation. Fuel 236, 544-553
  • [70] Mishra A, Sardar M (2015). Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis. Int. J. Biol. Macromol. 77, 105-113
  • [71] Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 29, 205-220
  • [72] Mohan SV, Mohanakrishna G, Chiranjeevi P, Per D, Sarma PN (2010a). Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented distillery wastewater: Evaluation of long term performance. Bioresour. Technol. 101, 3363-3370
  • [73] Muhammad MN, Maikaje DB, Denwe SD, Abdullahi AF (2013). Evaluation of fermentation products of Eichhornia crassipes, Pistia stratiotes, and Salvinia molesta. Agric. Biol. J. N. Am. 7, 27-31
  • [74] Muthuvelu KS, Rajarathinam R, Kanagaraj LP, Ranganathan RV, Dhanasekaran K, Manickam NK (2019). Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Manag. 15, 368-374
  • [75] Nguyen TH, Ra CH, Sunwoo I, Jeong GT, Kim SK (2017). Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioproc. Biosyst. Eng. 40, 529-536
  • [76] Nikolić S, Pejin J, Mojović L (2016). Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem. Ind. Chem. Eng. Q. 22, 375-390
  • [77] OECD/FAO (2018). OECD-FAO Agricultural Outlook, OECD Agriculture statistics (database). http://dx.doi.org/10.1787/agr-outl-data-en.
  • [78] Osho MB, Popoola TO, Kareem SO, Arowolo TA (2014). Transesterification of Jatropha seeds oil by vegetative sponge immobilized lipase of Alternaria sp. MGGP 06 for fatty acid methyl ester production under optimized conditions. Pet. Technol. Dev. J. 1, 56-70
  • [79] Pena L, Ikenberry M, Hohn KL, Wang D (2012). Acid-functionalized nanoparticles for pretreatment of wheat straw. J. Biomater. Nanobiotechnol. 3, 342-352.
  • [80] Perniel M, Ruan R, Martinez B (1998). Nutrient removal from a stormwater detention pond using duckweed. Appl. Eng. Agric. 14, 605-609
  • [81] Rahman QM, Wang L, Zhang B, Xiu S, Shahbazi A (2015). Green biorefinery of fresh cattail for microalgal culture and ethanol production. Bioresour. Technol. 185, 436-440
  • [82] Rakin M, Mojovic L, Nikolic S, Vukasinovic M, Nedovic V (2009). Bioethanol production by immobilized Sacharomyces cerevisiae var. ellipsoideus cells. Afric. J. Biotechnol. 8, 464-471
  • [83] Razack SA, Duraiarasan S, Mani V (2016). Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnol. Rep. 11, 70-76
  • [84] Rezania S, Ponraj M, Md Din MF, Songip AR, Sairan FM, Chelliapan S (2015). The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943-954
  • [85] Robak K, Balcerek M (2020). Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol. Res. 240, 125634
  • [86] Saha P, Baishnab AC, Alam F, Khan MR, Islam A (2014). Production of bio-fuel (bio-ethanol) from biomass (pteris) by fermentation process with yeast. Procedia Eng. 90, 504-509
  • [87] Saini, J.K., Saini, R. & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5, 337–353. https://doi.org/10.1007/s13205-014-0246-5
  • [88] Santos FCU, Paim LL, Silva JLD, Stradiotto NR (2016). Electrochemical determination of total reducing sugars from bioethanol production using glassy carbon electrode modified with graphene oxide containing copper nanoparticles. Fuel 163, 112-121
  • [89] Sanusi IA, Faloye FD, Kana EBG (2019). Impact of various metallic oxide nanoparticles on ethanol production by Saccharomyces cerevisiae BY4743: screening, kinetic study and validation on potato waste. Catal. Lett. 149, 2015-2031
  • [90] Sanusi IA, Suinyuy TN, Lateef A, Kana GEB (2020). Effect of nickel oxide nanoparticles on bioethanol production: Process optimization, kinetic and metabolic studies. Process Biochem. 92, 386-400
  • [91] Shadbahr J, Zhang Y, Khan F, Hawbold K (2018). Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production. Renew. Energy 125, 100-107
  • [92] Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, et al. (2017). Water hyacinth a potential source for value addition: An overview. Bioresour. Technol. 230, 152-162
  • [93] Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami AS, Ok YS, et al. (2020). A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers. Manag. 212, 112792
  • [94] Srivastava N, Singh J, Ramteke PW, Mishra PK, Srivastava M (2015). Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour. Technol. 183, 262-266
  • [95] Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016). Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigates AA001. Front. Microbiol. 7:9
  • [96] Su TC, Fang Z, Zhang F, Luo J, Li XK (2015). Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave. Sci. Rep. 5, 17538.
  • [97] Sudhakar MP, Merlyn R, Arunkumar K, Perumal K (2016). Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker's yeast. Biomass Bioenerg. 90, 148-154
  • [98] Tri CL, Khuong LD, Kamei I (2018). The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int. Biodeter. Biodegr. 133, 86-92
  • [99] Velázquez AE, Salem AZM, Khusro A, Barbabosa-Pliego A, Rodríguez GB, Elghandour MMMY (2020). Sustainable mitigation of fecal greenhouse gases emission from equine using safflower and fish oils in combination with live yeast culture as additives towards a cleaner ecosystem. J. Clean. Prod. 256, 120460
  • [100] Verma ML, Barrow CJ, Puri M (2013). Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilization with potential applications in biodiesel production. Appl. Microbiol. Biotechnol. 97, 23-39
  • [101] Vučurović VM, Razmovski RN (2012). Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production. Ind. Crop. Prod. 39, 128-134
  • [102] Waghmare PR, Khandare RV, Jeon BH, Govindwar SP (2018). Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Res. J. 19, 846-853
  • [103] Yan Q, Liu X, Wang Y, Li H, Li Z, Zhou L, et al. (2018). Cow manure as a lignocellulosic substrate for fungal cellulase expression and bioethanol production. AMB Express 8, 190
  • [104] Yeh RH, Lin YS, Wang TH, Kuan WC, Lee WC (2016). Bioethanol production from pretreated Miscanthus floridulus biomass by simultaneous saccharification and fermentation. Biomass Bioenerg. 94, 110-116
  • [105] Zhang B, Wang L, Shahbazi A, Diallo O, Whitmore A (2011). Dilute-sulfuric acid pretreatment of cattails for cellulose conversion. Bioresour. Technol. 102, 9308-9312
  • [106] Zhao X, Moates GK, Ellisto A, Wilson DR, Coleman MJ, Waldron KW (2015). Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre. Bioresour. Technol. 194, 263-269

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-338146eb-e77f-4807-b15d-d83ac8e44d4d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.