PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 20 | 34-42
Article title

ADSORPTION OF BASIC YELLOW 28 (BY 28) AND ACID YELLOW 23 (AY 23) DYES ONTO CHITIN

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present study investigated the sorption of Basic Yellow 28 (BY 28) and Acid Yellow 23 (AY 23) by chitin flakes. The study determined the influence of pH value on adsorption effectiveness and the adsorption capacity of chitin flakes. The results were described with Freundlich, Langmuir, Sips and double Langmuir isotherms. Similar values of adsorption capacities were achieved for both tested dyes using Langmuir, Sips and Langmuir2 models, i.e. 16.804, 17.740 and 18687 mg/g d.m. for BY28 as well as 24.195, 27.930 and 24.196 mg/g d.m. for AY23, respectively. The isotherms were compared with the use of average relative error (ARE) of approximation. In the case of both dyes, the best fit to experimental data was achieved with the use of tri-parametric Sips equilibrium isotherm, which was indicated by ARE values of 3.10% (BY 28) and 5.26% (AY 23).
Keywords
Publisher

Year
Volume
20
Pages
34-42
Physical description
Contributors
  • Department of Environmental Engineering University of Warmia and Mazury in Olsztyn ul. Warszawska 117, 10–720 Olsztyn, Poland, urszula.filipkowska@uwm.edu.pl
  • Department of Biotechnology in Environmental Protection, University of Warmia and Mazury in Olsztyn ul. Słoneczna 45g,10–702 Olsztyn, Poland
  • Department of Environmental Engineering University of Warmia and Mazury in Olsztyn ul. Warszawska 117, 10–720 Olsztyn, Poland
  • Department of Environmental Engineering University of Warmia and Mazury in Olsztyn ul. Warszawska 117, 10–720 Olsztyn, Poland
  • Department of Biotechnology in Environmental Protection, University of Warmia and Mazury in Olsztyn ul. Słoneczna 45g,10–702 Olsztyn, Poland
References
  • 1. Filipkowska U.; (2011) Wykorzystanie właściwości adsorpcyjnych materiałów odpadowych do usuwana barwników z roztworów wodnych. Monografie Komitetu Inżynierii Środowiska PAN. Lublin. 91.
  • 2. Sarayu K., Sandhya S.; (2012) Current Technologies for Biological Treatment of Textile Wastewater–A Review, Appl. Biochem. Biotechnol. 167, 645-661. DOI: 10.1007/s12010-012-9716-6
  • 3. Lazaridis N. K., Karapantsios T.D. Georgantas D.; (2003) Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption, Water Res. 37, 3023-3033. DOI:10.1016/S0043-1354(03)00121-0
  • 4. Kärcher S., Kornmüller A., Jekel M.; (2001) Cucurbituril for water treatment. Part I: Solubility of cucurbituril and sorption of reactive dyes, Water Res. 35, 3309-3316. DOI: 10.1016/S0043-1354(01)00038-0
  • 5. Chen W- J., Hsiao L. C., Chen K. K-Y; (2008) Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant, Proc. Biochem. 43, 488–498.
  • 6. Amer M. W., Khalili F. I., Awwad A. M.; (2010) Adsorption of lead, zinc and cadmium ions on polyphosphate-modified kaolinite clay. J. Environm. Chem. Ecotoxic. 2(1): 1-8.
  • 7. Hamed M. A., El-Sherbini Kh. S. A., Soliman Y. A., El-Deek M. S., Emara M. M., El-Sawy M.A.; (2011) Preconcentration and separation of some heavy metal ions by solid-phase extraction using silica modified with zirconium phosphate. Journal of Environmental Chemistry and Ecotoxicology. 3(10): 250-263.
  • 8. Wang J., Zhang D., Lawson T. R., Bartach R. A.; (2009) Sorption of heavy metal ions by silica gel-immobilized, proton-ionizable calixarenes, Talanta 78, 477–483. DOI: 10.1016/j.talanta.2008.11.038
  • 9. Kanawade S.M., Gaikwad R.W.; (2011) Adsorption of heavy metals by activated carbon synthesized from solid wastes, Int. J. Chem. Eng. Appl. 2, 207 – 211. DOI: 10.7763/IJCEA.2011.V2.104
  • 10. Faudi N.A.Bt., Ibrahim A.S., Ismail K.N.; (2012) Review study for activated carbon from polm shell used for treatment of waste water, J. Purity, Utility Reaction Environm. 1(5): 252 – 266.
  • 11. Foo 2010 Foo K.Y., Hameed B.H.; (2010) Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156, 2–10.
  • 12. Machida M.. Kikuchi Y., Aikawa M., Matsumoto H.; (2004) Kinetics of adsorption and desorption of Pb(II) in aqueous solution on activated carbon by two-site adsorption model, Colloids and Surfaces A: Physicochemical and Engineering Aspects 240, 179-186. DOI: 10.1016/j.colsurfa.2004.04.046
  • 13. Cojocarua C., Diaconua M., Cretescua I., Savi J., Vasi V.; (2009) Biosorption of copper(II) ions from aqua solutions using dried yeast biomass, Colloids and Surfaces A: Physicochemical and Engineering Aspects 335, 181–188. DOI: 10.1016/j.colsurfa.2008.11.003
  • 14. Ho Y.S., Porter J.F., McKay G., (2002) Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems, Water, Air, and Soil Pollution 141. 1-33.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-337f54fb-ccb0-4854-9b02-ca95b751dd15
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.