Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 27 | 54-66

Article title

HIERARCHICAL ZEOLITES MODIFIED WITH CHITOSAN – SYNTHESIS AND CHARACTERISATION

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper describes the synthesis of hierarchical zeolites based on a commercial FAU zeolite modified with chitosan. Additionally, the amount of silicon source added (tetraethyl orthosilicate) and the type of structuring agent used were modified during synthesis of the materials. The synthesised materials were characterised by the following methods: X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and low-temperature nitrogen adsorption/ desorption isotherms. The obtained results confirmed the achievement of additional porosity in the synthesised materials. According to the adsorption experiments, the hierarchical zeolite-modified chitosan had a high adsorption capacity of 1.2 cm3 g-1.

Year

Volume

27

Pages

54-66

Physical description

Contributors

  • Adam Mickiewicz University, Faculty of Chemistry
  • Adam Mickiewicz University, Faculty of Chemistry
author
  • Adam Mickiewicz University, Faculty of Chemistry

References

  • [1] Hartmann M, Gonche A, Schwieger W; (2016) Catalytic test reactions for the evaluation of hierarchical zeolites. Chem Soc Rev 45, 3313-3330. DOI:10.1039/C5CS00935A
  • [2] Chal R, Gérardin C, Bulut M, van Donk S; (2011) Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem 3, 67-81. DOI:10.1002/cctc.201000158
  • [3] Feliczak-Guzik A; (2018) Hierarchical zeolites: synthesis and catalytic properties. Microporous Mesoporous Mater 259, 33-45. DOI:10.1016/j.micromeso.2017.09.030
  • [4] Müller JM, Mesquita GC, Franco SM, Borges LD, deMacedo JL, Dias JA, Dias SCL; (2015) Solid-state dealumination of zeolites for use as catalysts in alcohol dehydration. Microporous Mesoporous Mater 204, 50-57. DOI:10.1016/j.micromeso.2014.11.002
  • [5] Koohsaryan E, Anbia M; (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37, 447-467. DOI:10.1016/S1872-2067(15)61038-5
  • [6] Karge HG, Weitkamp J (eds); (2002). Post-synthesis modification I. Springer-Verlag, Berlin.
  • [7] Varma RS; (2019) Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustainable Chem Eng 7, 6458-6470. DOI:10.1021/acssuschemeng.8b06550
  • [8] Zahedifar M, Es-Haghi A, Zhiani R, Sadeghzadeh SM; (2019) Synthesis of benzimidazolones by immobilized gold nanoparticles on chitosan extracted from shrimp shells supported on fibrous phosphosilicate. RSC Adv 9, 6494-6501. DOI:10.1039/C9RA00481E
  • [9] Jiang Z, Jiang ZJ, Tian X, Chen W; (2014) Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J Mater Chem A 2, 441−450. DOI:10.1039/C3TA13832A
  • [10] Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N; (2016) Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustain Chem Eng 4, 3912-3920. DOI:10.1021/acssuschemeng.6b00767
  • [11] Yan N, Chen X; (2015) Sustainability: don’t waste seafood waste. Nature 524, 155-157. DOI:10.1038/524155a.
  • [12] Sivashankari PR, Prabaharan M; (2017) Deacetylation modification techniques of chitin and chitosan. In: Jennings JA, Bumgardner JD (eds), Chitosan based biomaterials volume 1: fundamentals. Elsevier, Cambridge, 117-133. DOI:10.1016/C2014-0-03147- 4
  • [13] Paulino AT, Simionato JI, Garcia JC, Nozaki J; (2006) Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym 64, 98-103. DOI:10.1016/j.carbpol.2005.10.032
  • [14] Nithya A, Kumari HLJ, Chandra Mohan S, Ruckmani K, Jothivenkatachalam K.; (2016) Physicochemical investigations of biogenic chitosan-silver nanocomposite as an antimicrobial and anticancer agent. Int J Biol Mac 92, 77-87. DOI:10.1016/j.ijbiomac.2016.07.003
  • [15] Youssef AM, Abdel-Aziz MS, El-Sayed SM; (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Mac 69, 185-191. DOI:10.1016/j.ijbiomac.2014.05.047
  • [16] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R; (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39, 1644-1667. DOI:10.1016/j.progpolymsci.2014.02.008
  • [17] Rhim JW, Hong SI, Park HM, Ng PKW; (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54, 5814-5822. DOI:10.1021/jf060658h
  • [18] Wawrzyńczak A, Jarmolińska S, Nowak I; (2022) Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catal Today 397-399, 526-539. DOI:10.1016/j.cattod.2021.06.019
  • [19] Feliczak-Guzik A, Jadach B, Piotrowska H, Murias M, Lulek J, Nowak I; (2016) Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. Microporous Mesoporous Mater 220, 231-238. DOI:10.1016/j.micromeso.2015.09.006
  • [20] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW; (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87, 1051-1069. DOI:10.1515/pac-2014-1117
  • [21] Prouzet E, Pinnavaia TJ; (1997) Assembly of mesoporous molecular sieves containing wormhole motifs by a nonionic surfactant pathway: control of pore size by synthesis temperature. Angew Chem Int Ed 36, 516-518. DOI:10.1002/anie.199705161
  • [22] Nowak I, Kilos B, Ziolek M, Lewandowska A; (2003) Epoxidation of cyclohexene on Nb-containing meso- and macroporous materials. Catal Today 78, 487-498. DOI:10.1016/S0920-5861(02)00332-2
  • [23] Feliczak-Guzik A, Sprynskyy M, Nowak I, Jaroniec M, Buszewski B; (2018) Application of novel hierarchical niobium-containing zeolites for the synthesis of alkyl lactate and lactic acid. J Colloid Interf Sci 516, 379-383. DOI:10.1016/j.jcis.2018.01.090
  • [24] Nowak I, Ziolek M, Jaroniec M (2004) Synthesis and characterization of polymertemplated mesoporous silicas containing niobium. J Phys Chem B 108, 12, 3722-3727. DOI:10.1021/jp036978a
  • [25] Nowak I, Feliczak A, Nekosova I, Cejka; (2007) Comparison of oxidation properties of Nb and Sn in mesoporous molecular sieves. J Appl Catal A General 321, 40. DOI:10.1016/j.apcata.2007.01.025
  • [26] Djelad A, Morsli A, Robitzer M, Bengueddach A, Di Renzo F, Quignard F; (2016) Sorption of Cu(II) ions on chitosan-zeolite x composites: impact of gelling and drying conditions. Molecules 21, 109-124. DOI:10.3390/molecules21010109
  • [27] Gao Y, Ru Y, Zhou L, Wang X, Wang J; (2018) Preparation and characterization of chitosan-zeolite molecular sieve composite for ammonia and nitrate removal. Adv Compos Lett 27(5), 185-192. DOI:10.1177/096369351802700502

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-33606652-d5e5-4074-91c8-53e42ff229dd
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.