Preferences help
enabled [disable] Abstract
Number of results
2016 | 35 | 44-61
Article title

Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials

Title variants
Languages of publication
In the paper, the porous coatings obtained on niobium and two titanium alloys (Ti6Al4V, and TNZ) after Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation, were studied. The samples were treated at the voltage of 450 V for 3 minutes in the electrolyte consisting of 300 g and 600 g of copper nitrate Cu(NO3)2 in 1 litre of concentrated phosphoric acid H3PO4, consecutively. SEM and EDS studies were performed on the samples. Based on the obtained results it may be concluded that enriched in copper porous coatings on all studied materials were created in the electrolyte within copper nitrate amounting for 600 g. The proposed by the Authors factor to evaluate the obtained coatings, i.e. copper-to-phosphorus ratio, which for the studied materials amounted to 0.21, clearly indicates that the performed electrochemical PEO treatment for surface modification especially of bioimplants may be advised.
Physical description
  • Division of Surface Electrochemistry and Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland,
  • Division of Surface Electrochemistry and Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland,
  • [1] Hryniewicz T, Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali). Monograph no. 26, ed. by Koszalin University of Technology Publishing: 1989, 161 pages.
  • [2] Hryniewicz T, On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych). Ed. by Koszalin University of Technology Publishing: 2007, 155 pages.
  • [3] Rokosz K, Electrochemical polishing in the magnetic field (Polerowanie elektrochemiczne w polu magnetycznym). Ed. by Koszalin University of Technology Publishing: 2012, 211 pages.
  • [4] Hryniewicz T, Rokicki R, Rokosz K, Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments. Surface and Coatings Technology, 62(17-18) (2008) 3073-3076; DOI: 10.1016/j.matlet.2008.01.130
  • [5] Hryniewicz T, Rokosz K, Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surface and Coatings Technology, 204(16-17) (2010) 2583-2592; DOI: 10.1016/j.surfcoat.2010.02.005
  • [6] Hryniewicz T, Rokosz K, Zschommler Sandim H R, SEM/EDX and XPS studies of niobium after electropolishing. Applied Surface Science, 263 (2012) 357-361; DOI:10.1016/j.apsusc.2012.09.060
  • [7] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332; DOI: 10.1179/174591907X246537
  • [8] Hryniewicz T, Rokicki R, Rokosz K, Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology, 203(9) (2008) 1508-1515; DOI:10.1016/j.surfcoat.2008.11.028
  • [9] Hryniewicz T, Rokosz K, Polarization characteristics of magnetoelectropolishing stainless steels. Materials Chemistry and Physics, 122(1) (2010) 169-174.
  • [10] Rokosz K, Hryniewicz T, Raaen S, Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters. Journal of Iron and Steel Research, 83(9) (2012) 910-918.
  • [11] Hryniewicz T, Rokosz K, Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Materials Chemistry and Physics, 123(1) (2010) 47-55.
  • [12] Hryniewicz T, Rokosz K, Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
  • [13] Hryniewicz T, Rokosz K, Valiček J, Rokicki R, Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Materials Letters, 83 (2012) 69-72; DOI:10.1016/j.matlet.2012.06.010
  • [14] Hryniewicz T, Rokosz K, Rokicki R, Prima F, Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8 (2015) 205-215; DOI:10.3390/ma8010205
  • [15] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, Comparative XPS analysis of passive layers composition formed on AISI 304L SS after standard and high-current density electropolishing. Surface and Interface Analysis, 47(1) (2015) 87-92.
  • [16] Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S, XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surface and Coatings Technology, 276 (2015) 516-520; DOI:10.1016/j.surfcoat.2015.06.022
  • [17] Rokosz K, Hryniewicz T, Rzadkiewicz S, Raaen S, High-Current-Density Electropolishing (HDEP) of AISI 316L (EN 1.4404) Stainless Steel. Tehnicki Vjesnik-Technical Gazette, 22(2) (2015) 415-424.
  • [18] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J, Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3) (1999) 73-93.
  • [19] Yerokhin A L, Nie X, Leyland A, Matthews A, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surface and Coatings Technology, 130(2-3) (2000) 195-206.
  • [20] Wheeler J M, Collier C A, Paillard J M, Curran J A, Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V. Surface and Coatings Technology, 204(21-22) (2010) 339-3409.
  • [21] Krzakala A, Mlynski J, Dercz G, Michalska J, Maciej A, Nieuzyla L, Simka W, Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension. Archives of Metallurgy and Materials, 59(1) (2014) 199-204.
  • [22] Rokicki R, Hryniewicz T, Pulletikurthi C, Rokosz K, Munroe N, Towards a better corrosion resistance and biocompatibility improvement of Nitinol medical devices. Journal of Materials Engineering and Performance, 24 (2015) 163401640; DOI: 10.1007/s11665-015-1429-x
  • [23] Zhang Xiangyu, Huang Xiaobo, Ma Yong, Lin Naiming, Fan Ailan, Tang Bin, Bactericidal behavior of Cu-containing stainless steel surfaces. Applied Surface Science, 258 (2012) 10058-10063.
  • [24] Xiaohong Y, Xiangyug Z, Haibo W, Linhai T, Yong M, Bin T, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Applied Surface Science, 292 (2014) 944-947; DOI: 10.1016/j.apsusc.2013.12.083
  • [25] Hempel F, Finke B, Zietz C, Bader R, Weltmann K D, Polak M, Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surface and Coatings Technology, 256 (2014) 52058; DOI:10.1016/j.surfcoat.2014.01.027
  • [26] Zhua W, Zhang Z, Gu B, Sun J, Zhu L, Biological Activity and Antibacterial Property of Nano-structured TiO2 Coating Incorporated with Cu Prepared by Micro-arc Oxidation. Journal of Materials Science and Technology, 29(3) (2013) 237-244; DOI:10.1016/j.jmst.2012.12
  • [27] Parajulee S, Hayakawa M, Ikezawa S, Adhesion Strength of TiN Stacked TiO2 Film Correlated with Contact Angle, Critical Load, and XPS Spectra. Plasma and Fusion Research: Letters, 4(055) (2009) 055-1-055-4; DOI:10.1585/pfr.4.055
  • [28] Fernandez A M, Guzman A M, Vera E, Rodriguez Paez J E, Efectos de fotodegradación propiciados por recubrimientos de TiO2 y TiO2 -SiO2 obtenidos por Sol-Gel. Boletín de la Sociedad Española de Cerámica y Vidrio V, 47(5) (2008) 259-266.
  • [29] Seiler H, Sigel H, Dekker M, Handbook of toxicity of inorganic compounds, New York, 1998.
  • [30] Kobayashi E, Wang T, Doi H, Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. Journal of Materials Science: Materials in Medicine, 9 (1998) 567-574.
  • [31] Łaskawiec J, Michalik R, Theoretical and application issues in implants, Publishing House of Silesian University of Technology, Gliwice, 2002 (in Polish).
  • [32] Simka W, Autoreferat habilitacyjny, Wydział Chemiczny Politechniki Śląskiej, 2013, 1-18.
  • [33] Browne R C, Vanadium Poisoning from Gas Turbines. British Journal of Industrial Medicine, 2(12) (1955) 57-59.
  • [34] Hulcher F H, Spectrophotometric Determination of Vanadium in Biological Material. Analytical Chemistry, 32 (1960) 1183-1185.
  • [35] Krewski D, Yokel R A, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz A M, Rondeau V, Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B Crit. Rev., 10(1) (2007) 1-269.
  • [36] Jacobs J J, Skipor A K, Black J, Urban R, Galante J O, Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. The Journal of Bone and Joint Surgery, 73 (1991) 1475-1486.
  • [37] Ku C.H., Pioletti D.P., Browne M., Gregson P.J., Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour, Biomaterials 23 (2002) 1447-1454.
  • [38] Bellows C G, Heersche J N, Aubin J E, Aluminium accelerates osteoblastic differentiation but is cytotoxic in long-term rat calvaria cell cultures. Calcified Tissue International, 65 (1999) 59-65.
  • [39] Aluminum CAS # 7429-90-5, PUBLIC HEALTH STATEMENT, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, Atlanta (2008)
  • [40] Davidson J A, Mishra A K, Kovasc P, Poggie R A, New Surface-Hardened, Low-Modulus, Corrosion-Resistant Ti-13Nb-13Zr Alloy for Total HIP Arthroplasty. Bio-Medical Materials and Engineering, 4 (1994) 231-243.
  • [41] Landsberg J P, McDonald B, Watt F, Absence of aluminium in neuritic plaque cores in Alzheimer's disease. Nature, 360 (1992) 65-68.
  • [42] Winship K A, Toxicity of tin and its compounds. Adverse Drug React Acute Poisoning Rev., 7(1) (1988) 19-38.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.