Preferences help
enabled [disable] Abstract
Number of results
2016 | 7 | 144-150
Article title

Pomiary 60Co w obiektach z żelazną matrycą

Title variants
60Co measurement in steel cast
Languages of publication
Radioactive cobalt isotope 60Co is produced in neutron activation process of stable isotope 59Co by neutron capture reaction 59Co(n,g)60Co, in solar wind charge exchange 60Ni(n,p)60Co or in spallation process 62Ni(n,p2n)60Co. These processes are responsible for isotope 60Co production either in nuclear reactor on Earth or beyond – in stars and in meteorites (induced by cosmic rays). In this work the results of 60Co measurements in metal sources by gamma spectrometry laboratory are presented. A metal reference radioactive standards made up of steel cast with discs shaped geometries and different diameters have been tested in gamma-ray spectrometry measurement system. The reference activity concentrations of 60Co were in the range of (0.291±0.010) Bq·g–1 to (1.544±0.030) Bq·g–1. The mean minimal detectable activities (MDA) obtained by series of the 6 to 18 hours lasting measurements of described above standards with HPGe detectors carried out in NCBJ OR POLATOM were in the range of 6.1 mBq·g–1 to 8.5 mBq·g–1. The results correspond to the values of 60Co activity concentration measured in the iron meteorites with young terrestrial ages.
Physical description
  • Atwood D.A., 2010, Radionuclides in the Environment, John Wiley & Sons, Ltd., West Sussex, England.
  • Clayton D., Dwek E., Woosley S., 1977, Isotopic anomalies and proton irradiation in the early solar system, Astrophysical J., vol. 214, s. 300–315.
  • Eberhardt P., Geiss J., Lutz H., 1963, Neutrons in meteorites. Earth Science and Meteoritics (Geiss J., Goldberg E.D., eds.), North-Holland, Amsterdam, s. 143-168.
  • Ehmann W.D., Kohman T.P., 1958, Cosmic-ray-induced radioactivities in meteorites - II Al26, Be10 and Co60, aerolites, siderites and tektites, Geoch. et Cosm. Acta 14(4), s. 364–379.
  • Friman E.L., 1966, Neutron Exposure Ages of Meteorites, Z. Naturforsch. 21A, 1966, s. 1138.
  • Honda et al., 1982, Cosmogenic nuclides in the Kirin chondrite, Earth Planet. Sci. Lett., 57, s. 101–109.
  • Huthison R., 2004, Meteorites. A petrologic, chemical and isotopic synthesis, Cambridge University Press.
  • Knie K. et al., 2004, 60Fe anomaly in a deep-sea manganese crust and its implications for a nearby supernova source, Physical, Review Letters 93:171103.
  • Lee T. et al., 1998, Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites, Astrophysical Journal, vol. 506 (2), s. 898.
  • Laubenstein M. et al., 2012, Cosmogenic radionuclides in the Sołtmany (L6) meteorite, Meteorites, 2 (2), s. 45–51.
  • Pokrzywnicki J., 1964, Meteoryty Polski. Katalog Meteorytów w Zbiorach Polskich, Studia Geol. Pol. 15, s. 1–176.
  • Shukolyukov A., Lugmair G.W., 1993, Live Iron-60 in the early solar system, Science, vol. 259 (5098), s. 1138–1142.
  • Shukolyukov A., Lugmair G.W., 1993, Fe-60 in eucrites, Earth & Planet. Scie. Lett., vol. 119 (1-2), s. 159–166.
  • Šolc J. et al., 2015, Characterization of a Radionuclide Specific Laboratory Detection System for the Metallurgical Industry, Rad. Phys. & Chem., vol. 116, s. 189–193.
  • Spergel M.S., Reedy R.C., Lazareth O.W., Levy P.W., Slatest L.A., 1986, Cosmogenic neutron-capture-produced nuclides in stony meteorites, Journal of Geophysical Research, 91, D483-D494.
  • Tachibana S., Huss G.R., 2003, The initial abundance of 60Fe in the solar system, The Astrophysical J., 588:L41.
  • Timmes F.X. et al., 1995, 26Al and 60Fe From Supernova Explosions, Astrophys. J., vol. 449 (204).
  • Tzika F. et al., 2016, A new large-volume metal reference standard for radioactive waste management, Rad. Prot. Dos., 168 (3), s. 293–299.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.