PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 24 | 151 - 163
Article title

APPLICATION OF TEXTURE PROFILE ANALYSIS TO INVESTIGATE THE MECHANICAL PROPERTIES OF THERMOSENSITIVE INJECTABLE CHITOSAN HYDROGELS

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, the mechanical properties of hybrid chitosan hydrogels were investigated using the texture profile analysis test. Scaffolds obtained from a polysaccharide of various molecular weights were studied, which, with the addition of glycerophosphate salt, formed a three-dimensional structure in vivo. The obtained systems were also enriched with collagen and calcium carbonate to improve the mechanical properties. The determined texture parameter values indicate that the mechanical properties of the hybrid hydrogel depend on the molecular weight of the polymer, the type of solvent and, the pH-neutralizing substance, as well as the type and concentration of the filler. Moreover, in some cases the TPA test was the only way to evaluate the mechanical properties of the obtained hydrogels due to the inability to determine the Young's modulus. Consequently, the texture analysis test is a valuable tool for selecting solutions depending on the intended application of the scaffolds.
Publisher

Year
Volume
24
Pages
151 - 163
Physical description
Contributors
author
author
  • Department of Chemical Engineering, Lodz University of Technology
  • Department of Chemical Engineering, Lodz University of Technology
References
  • [1] Khan, F.; Tanaka, M. (2017). Designing Smart Biomaterials for Tissue Engineering, International Journal of Molecular Sciences, Vol. 19, No. 1. DOI:10.3390/ijms19010017
  • [2] Costa, V. C.; Costa, H. S.; Vasconcelos, W. L.; Pereira, M. de M.; Oréfice, R. L.; Mansur, H. S. (2007). Preparation of hybrid biomaterials for bone tissue engineering, Materials Research, Vol. 10, No. 1, 21–26. DOI:10.1590/S1516-14392007000100006
  • [3] Nair, L. S.; Laurencin, C. T. (2007). Biodegradable polymers as biomaterials, Progress in Polymer Science, Vol. 32, No. 8, 762–798.DOI:10.1016/j.progpolymsci.2007.05.017
  • [4] Ahsan, S. M.; Thomas, M.; Reddy, K. K.; Sooraparaju, S. G.; Asthana, A.; Bhatnagar, I. (2018). Chitosan as biomaterial in drug delivery and tissue engineering, International Journal of Biological Macromolecules, Vol. 110, 97–109. DOI:10.1016/j.ijbiomac.2017.08.140
  • [5] Ali, A.; Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery, International Journal of Biological Macromolecules, Vol. 109, 273–286. DOI:10.1016/j.ijbiomac.2017.12.078
  • [6] Sivashankari, P. R.; Prabaharan, M. (2016). Prospects of chitosan-based scaffolds for growth factor release in tissue engineering, International Journal of Biological Macromolecules, Vol. 93, 1382–1389. DOI:10.1016/j.ijbiomac.2016.02.043
  • [7] Owczarz, P. (2019). Inżynieria Koloidalnych Układów Chitozanowych Wrażliwych Na Zmianę Temperatury, Monografie Politechniki Łódzkiej, Łódź
  • [8] Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, Vol. 21, No. 21, 2155–2161. DOI:10.1016/S0142-9612(00)00116-2
  • [9] Chang, B.; Ahuja, N.; Ma, C.; Liu, X. (2017). Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Materials Science and Engineering: R: Reports, Vol. 111, 1–26. DOI:10.1016/j.mser.2016.11.001
  • [10] Owczarz, P.; Rył, A.; Modrzejewska, Z.; Dziubiński, M. (2017). The influence of the addition of collagen on the rheological properties of chitosan chloride solutions, Progress in the Chemistry and Application of Chitin and Its Derivatives, Vol. 22, 176–189. DOI:10.15259/PCACD.22.18
  • [11] Yan, F.; Yue, W.; Zhang, Y.-L.; Mao, G.-C.; Gao, K.; Zuo, Z.-X.; Zhang, Y.-J.; Lu, H. (2015). Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke, Neural Regeneration Research, Vol. 10, No. 9, 1421–1426. DOI:10.4103/1673-5374.163466
  • [12] Owczarz, P.; Rył, A.; Dziubiński, M.; Sielski, J. (2019). Injectable Chitosan Scaffolds with Calcium β-Glycerophosphate as the Only Neutralizing Agent, Processes, Vol. 7, No. 5, 297. DOI:10.3390/pr7050297
  • [13] Nwe, N.; Furuike, T.; Tamura, H. (2009). The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri, Materials, Vol. 2, No. 2, 374–398. DOI:10.3390/ma2020374
  • [14] Tangsadthakun, C.; Kanokpanont, S.; Sanchavanakit, N.; Banaprasert, T.; Damrongsakkul, S. (2006). Properties of collagen/chitosan scaffolds for skin tissue engineering, Journal of Metals, Materials and Minerals, Vol. 16, No. 1
  • [15] Yuan, Y.; Chesnutt, B. M.; Haggard, W. O.; Bumgardner, J. D. (2011). Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures, Materials (Basel, Switzerland), Vol. 4, No. 8, 1399–1416. DOI10.3390/ma4081399
  • [16] De Souza Ferreira, S. B.; Moço, T. D.; Borghi-Pangoni, F. B.; Junqueira, M. V.; Bruschi, M. L. (2016). Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 55, 164–178. DOI:10.1016/j.jmbbm.2015.10.026
  • [17] Owczarz, P.; Ziółkowski, P.; Modrzejewska, Z.; Kuberski, S.; Dziubiński, M. (2018). Rheo-Kinetic Study of Sol-Gel Phase Transition of Chitosan Colloidal Systems, Polymers, Vol. 10, No. 1, 47. DOI:10.3390/polym10010047
  • [18] Rył, A.; Owczarz, P. (2018). Influence of fish collagen on viscoelastic properties and sol-gel phase transition of chitosan solutions, Acta Innovations, No. 27, 14–23
  • [19] Razavi, S. M. A.; Karazhiyan, H. (2012). Rheological and Textural Characteristics of Date Paste, International Journal of Food Properties, Vol. 15, No. 2, 281–291. DOI:10.1080/10942912.2010.483615
  • [20] Tuğcu-Demiröz, F.; Acartürk, F.; Erdoğan, D. (2013). Development of long-acting bioadhesive vaginal gels of oxybutynin: Formulation, in vitro and in vivo evaluations, International Journal of Pharmaceutics, Vol. 457, No. 1, 25–39. DOI:10.1016/j.ijpharm.2013.09.003
  • [21] Chandra, M. V.; Shamasundar, B. A. (2015). Texture Profile Analysis and Functional Properties of Gelatin from the Skin of Three Species of Fresh Water Fish, International Journal of Food Properties, Vol. 18, No. 3, 572–584. doi:10.1080/10942912.2013.845787
  • [22] Baloglu, E.; Karavana, S. Y.; Senyigit, Z. A.; Guneri, T. (2011). Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base, Pharmaceutical Development and Technology, Vol. 16, No. 6, 627–636. DOI:10.3109/10837450.2010.508074
  • [23] Gratieri, T.; Gelfuso, G. M.; Rocha, E. M.; Sarmento, V. H.; de Freitas, O.; Lopez, R. F. V. (2010). A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 75, No. 2, 186–193. DOI:10.1016/j.ejpb.2010.02.011
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-31ab2499-3b58-43f8-9667-3d240df7c02e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.