Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 16 | 4 | 187–193

Article title

Metody przyżyciowego (in vivo) określania organizacji ciała migdałowatego u ludzi – aktualny stan wiedzy

Content

Title variants

EN
Methods for in vivo determination the amygdala organisation in humans: state of the art

Languages of publication

PL

Abstracts

PL
Ciało migdałowate jest parzystą strukturą podkorową zlokalizowaną w płatach skroniowych mózgu. Struktura ta wzbudza zainteresowanie badaczy ze względu na jej związek z emocjami i procesami uczenia się. Badania z udziałem zwierząt sugerują, że grupy jąder znajdujące się w różnych częściach ciała migdałowatego są elementami odrębnych sieci neuronowych i mogą pełnić odmienne funkcje w procesach emocjonalnych i poznawczych. Część autorów dochodzi wręcz do wniosku, że ciało migdałowate zostało uznane za jedną strukturę wyłącznie z powodu bliskiego położenia grup jąder. Zweryfikowanie tej hipotezy w odniesieniu do ludzi jest bardzo trudne, ponieważ do niedawna wyodrębnienie części ciała migdałowatego w ludzkim mózgu było możliwe jedynie dzięki badaniom anatomicznym wykonywanym pośmiertnie. Dopiero w ostatnich latach, za pomocą technik rezonansu magnetycznego, podjęto próby określenia części ciała migdałowatego na podstawie strukturalnych i funkcjonalnych połączeń z innymi obszarami mózgu. Dotychczas przeprowadzono nieliczne badania dotyczące tego zagadnienia, jednak ich wyniki nie są spójne – ani pod względem liczby wyodrębnionych części, ani pod względem ich lokalizacji. Przyczyn otrzymywania niejednoznacznych wyników można upatrywać w stosowaniu różnych metod określania połączeń, w różnych parametrach akwizycji danych oraz w posługiwaniu się różnymi technikami analizy, przede wszystkim zaś w  wykorzystywaniu różnych algorytmów grupujących. Przyszłe badania powinny zatem koncentrować się na opracowaniu jak najbardziej wiarygodnego sposobu wyróżniania części ciała migdałowatego, który pozwoliłby na jednoznaczne ich zidentyfikowanie. Tylko wtedy możliwe będzie pełne poznanie funkcjonalnej organizacji ciała migdałowatego u ludzi.
EN
The amygdala is a subcortical structure located bilaterally in the medial temporal lobes. This structure captures the attention of neuroscientists due to its role in emotion processing and learning. Animal studies indicate that groups of nuclei situated in different parts of the amygdala are components of distinct neural circuits underlying in a varied way emotional and cognitive processes. Some authors even argue that the amygdala is deemed a single unit only owing to nuclei groups located closely. Verifying such a hypothesis with regard to humans is very difficult as, until quite recently, there has been only one method of amygdala parcellation, based on post-mortem anatomical tissue analysis. However, in more recent years, several attempts have been made to parcellate the human amygdala on the basis of structural and functional connectivity with other areas of the brain using magnetic resonance imaging techniques. Results of analyses conducted until now are not congruent in respect of the number and localisation of the obtained amygdala parts. This may be a consequence of using different techniques (functional magnetic resonance imaging or diffusion tensor imaging), various acquisition parameters of scanner and distinct data analysis procedures, especially clustering algorithms. Future research should be focused on the development of the most reliable method for parcellation of the human amygdala to enable clear identification. This will allow one to learn more about the functional organisation of this structure in humans.

Discipline

Year

Volume

16

Issue

4

Pages

187–193

Physical description

Contributors

  • Pracownia Psychofizjologii, Zakład Neurofizjologii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Warszawa, Polska
  • Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
author
  • Pracownia Psychofizjologii, Zakład Neurofizjologii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Warszawa, Polska
  • Pracownia Psychofizjologii, Zakład Neurofizjologii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Warszawa, Polska

References

  • Amaral DG, Price JL, Pitkanen A et al.: Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (eds.): The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. Wiley-Liss, New York 1992.
  • Amunts K, Kedo O, Kindler M et al.: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 2005; 210: 343–352.
  • Bach DR, Behrens TE, Garrido L et al.: Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. J Neurosci 2011; 31: 618–623.
  • Barbour T, Murphy E, Pruitt P et al.: Reduced intra-amygdala activity to positively valenced faces in adolescent schizophrenia offspring. Schizophr Res 2010; 123: 126–136.
  • Barnes KA, Cohen AL, Power JD et al.: Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Front Syst Neurosci 2010; 4: 18.
  • Biswal B, Yetkin FZ, Haughton VM et al.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537–541.
  • Blechert J, Michael T, Vriends N et al.: Fear conditioning in posttraumatic stress disorder: Evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 2007; 45: 2019–2033.
  • Boll S, Gamer M, Gluth S et al.: Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. Eur J Neurosci 2013; 37: 758–767.
  • Brown VM, LaBar KS, Haswell CC et al.: Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology 2014; 39: 351–359.
  • Bullmore E, Sporns O: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186–198.
  • Cohen AL, Fair DA, Dosenbach NUF et al.: Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 2008; 41: 45–57.
  • Eickhoff SB, Heim S, Zilles K et al.: Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 2006; 32: 570–582.
  • Eickhoff SB, Stephan KE, Mohlberg H et al.: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005; 25: 1325–1335.
  • Eickhoff SB, Thirion B, Varoquaux G et al.: Connectivity-based parcellation: critique and implications. Hum Brain Mapp 2015; 36: 4771–4792.
  • Entis JJ, Doerga P, Barrett LF et al.: A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra-high resolution MRI. Neuroimage 2012; 60: 1226–1235.
  • Etkin A, Prater KE, Schatzberg AF et al.: Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry 2009; 66: 1361–1372.
  • Fox MD, Snyder AZ, Vincent JL et al.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005; 102: 9673–9678.
  • Gaigg SB, Bowler DM: Differential fear conditioning in Asperger’s syndrome: implications for an amygdala theory of autism. Neuropsychologia 2007; 45: 2125–2134.
  • Greicius MD, Supekar K, Menon V et al.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009; 19: 72–78.
  • Hrybouski S, Aghamohammadi-Sereshki A, Madan CR et al.: Amygdala subnuclei response and connectivity during emotional processing. Neuroimage 2016; 133: 98–110.
  • Jones DK: Studying connections in the living human brain with diffusion MRI. Cortex 2008; 44: 936–952.
  • Kahnt T, Chang LJ, Park SQ et al.: Connectivity-based parcellation of the human orbitofrontal cortex. J Neurosci 2012; 32: 6240–6250.
  • Kim JH, Lee JM, Jo HJ et al.: Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 2010; 49: 2375–2386.
  • Knapska E, Lioudyno V, Kiryk A et al.: Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J Neurosci 2013; 33: 14591–14600.
  • Knapska E, Radwanska K, Werka T et al.: Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87: 1113–1173.
  • LeDoux JE: Emotion circuits in the brain. Ann Rev Neurosci 2000; 23: 155–184.
  • Mai JK, Paxinos G, Voss T: Atlas of the Human Brain. 3rd ed., Elsevier Academic Press, Amsterdam 2008.
  • McHugh MJ, Demers CH, Salmeron BJ et al.: Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals. Front Psychiatry 2014; 5: 16.
  • Mishra A, Rogers BP, Chen LM et al.: Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Hum Brain Mapp 2014; 35: 1247–1260.
  • Nieuwenhuys R: The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 2013; 218: 303–352.
  • O’Doherty JP: Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 2004; 14: 769–776.
  • Parkinson JA, Robbins TW, Everitt BJ: Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur J Neurosci 2000; 12: 405–413.
  • Phelps EA, LeDoux JE: Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005; 48: 175–187.
  • Prévost C, McCabe JA, Jessup RK et al.: Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning. Eur J Neurosci 2011; 34: 134–145.
  • Roy AK, Shehzad Z, Margulies DS et al.: Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 2009; 45: 614–626.
  • Sah P, Faber ESL, Lopez De Armentia M et al.: The amygdaloid complex: anatomy and physiology. Physiol Rev 2003; 83: 803–834.
  • Saygin ZM, Osher DE, Augustinack J et al.: Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage 2011; 56: 1353–1361.
  • Solano-Castiella E, Anwander A, Lohmann G et al.: Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage 2010; 49: 2958–2965.
  • Swanson LW, Petrovich GD: What is the amygdala? Trends Neurosci 1998; 21: 323–331.
  • Yilmazer-Hanke DM: Amygdala. In: Mai JK, Paxinos G (eds.): The Human Nervous System. 3rd ed., Elsevier Academic Press, San Diego 2012.
  • Zilles K, Amunts K: Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 2009; 22: 331–339.
  • Zilles K, Palomero-Gallagher N, Amunts K: Cytoarchitecture and maps of the human cerebral cortex. In: Toga AW (ed.): Brain Mapping: An Encyclopedic Reference. Elsevier Academic Press, 2015.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-30b759cf-3f00-4ee5-bde0-be8c87e39669
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.