PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 140 | 113-126
Article title

Spatial-Temporal Analysis of Rainfall West Java Indonesia Using Empirical Orthogonal Function based on Singular Value Decomposition

Content
Title variants
Languages of publication
EN
Abstracts
EN
Rainfall is one of the climate variables that have a significant influence, especially in supporting the activities of various sectors in tropical countries. Climate change is causing rainfall variability in Indonesia. However, the analysis of climate variable patterns is difficult because of the formation of a large matrix. Empirical Orthogonal Function (EOF) analysis can be used to reduce the dimensions of large data by maintaining as much variation as possible from the original data set. The method used in this study is through the Singular Value Decomposition (SVD) approach. The analysis shows that 98.50% of the total rainfall variance can be represented by four EOF modes. Analysis of the spatial pattern of EOF1 shows that rainfall is below average, while the other EOF modes show variations in rainfall.
Contributors
  • Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
author
  • Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
author
  • Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
References
  • [1] A. Domanov, A. Stegeman, L.D. Lathauwer. On the largest multilinear singular values of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 38 (2017) 1434-1453
  • [2] A. Nugroho, B.H. Simanjuntak. ARMA (Autoregressive Moving Average) Model for Prediction of Rainfall in Regency of Semarang – Central Java – Republic of Indonesia. International Journal of Computer Science 11 (2014) 27-32
  • [3] A.R. As-syakur, I.W.S. Adnyana, M.S. Mahendra, I.W. Arthana, I.N. Merit, I.W. Kasa, N.W. Ekayansi, I.W. Nuarsa, I.N. Sunarta. Observation of Spatial Patterns on the Rainfall Response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis. International Journal of Climatology 34 (2014) 3825-3839
  • [4] A.R. As-syakur, T. Tanaka, T. Osawa. Indonesian Rainfall Variability Observation using trmm Multi-satellite Data. International Journal of Remote Sensing 34 (2013) 7723-7738
  • [5] A.R. As-syakur. Spatio-Temporal Variations of Rainfall and SST Anomaly over Indonesia during ENSO Modoki Event in 2010. Journal of Marine and Aquatic Sciences 1 (2015) 23-29
  • [6] B.C. Mohan, S.S. Kumar. A robust image watermarking scheme using Singular Value Decomposition. Journal of Multimedia 3 (2008) 7-15
  • [7] B.D. Hamlington, R.R. Leben, R.S. Nerem, W. Han, K.Y. Kim. Reconstructing Sea Level using Cyclostationary Empirical Orthogonal Functions. Journal of Geophysical Research 116 (2015) C12015.
  • [8] C.M. Free, J.T. Thorson, M.L. Pinsky, K.L. Oken, J. Wiedenmann, O.P. Jensen. Impacts of historical warming on marine fisheries production. Research 363 (2019) 979-983
  • [9] E. Aldrian, Y.S. Djamil. Spatio-temporal climatic change of rainfall in East Java Indonesia. International Journal of Climatology 28 (2008) 435-448
  • [10] G.H. Golub, C. Reinsch. Singular Value Decomposition and Least Squares Solutions. Handbook for Automatic Computation 2 (1971) 134-151
  • [11] H. Deng, Y. Chen. Influences of recent climate change and human activities on water storage variations in Central Asia. Journal of Hydrology 544 (2017) 46-57
  • [12] H. Tatli, M. Turkes. Empirical Orthogonal Function analysis of the palmer drought indices. Agricultural and Forest Meteorology 151 (2011) 981-991
  • [13] H.L. Yu, H.J. Chu. Understanding Space-time Patterns of Groundwater System by Empirical Orthogonal Functions: A Case Study in the Choshui River Alluvial Fan, Taiwan. Journal of Hydrology 381 (2010) 239-247
  • [14] H.L. Yu, Y. Lin. Analysis of Space-time Non-stationary Patterns of Rainfall-groundwater Interactions by Integrating Empirical Orthogonal Function and Cross Wavelet Transform Methods. Journal of Hydrology 525 (2015) 582-597
  • [15] I.T. Jolliffe, J. Cadima. Principal component analysis: a review and recent developments. Philosophical Transactions A 374 (2016) 20150202
  • [16] J.A.P. Oliveira. Learning how to align climate, environmental and development objectives in cities: lessons from implementation of climate co-benefits initiatives in urban Asia. Journal of Cleaner Production 58 (2013) 7-14
  • [17] K.Y. Kim, G.R. North, J. Huang. EOFs of One-dimensional Cyclostationary time series: Computations, Examples, and Stochastic Modeling. Journal of the Atmospheric Science 53 (1996) 1007-1017
  • [18] L. Cheng, A. Agha Kouchak, E. Gilleland, R.W. Katz. Non-stationary extreme value analysis in a changing climate. Climate Change 127 (2014) 353-369
  • [19] L.D. Lathauwer, B.D. Moor, J. Vandewalle. A multilinear singular value decomposition. Society for Industrial and Applied Mathematics 21 (2000) 1253-1278
  • [20] M. Zikra, Suntoyo, Lukijanto. Climate change impacts on Indonesia coastal areas. Procedia Earth and Planetary Science 14 (2015) 57-63
  • [21] Mislan, Haviluddin, S. Hardwinarto, Sumaryono, M. Aipassa. Rainfall Monthly Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East Kalimantan - Indonesia. Procedia Computer Science 59 (2015) 142-151
  • [22] O. David. Model for Association in Bivariate Survival Data. Journal of the Royal Statistical Society. Series B (Methodology) 44 (1982) 414-422
  • [23] P. Setiawan, S. Nurdiati, A. Sopaheluwakan. Numerical analysis using empirical orthogonal function based on multivariate singular value decomposition on Indonesia forest fire signal. IOP Conference Series: Earth and Environmental Sciences 303 (2019) 012053.
  • [24] P. Naveau, M. Nogaj, C. Ammann, P. Yiou, D. Cooley, V. Jomelli. Statistical methods for the analysis of climate extremes. Comptes Rendus Geoscience 337 (2005) 1013-1022
  • [25] R. Prasetia, T. Osawa, I.W.S. Adnyana. Prediction of Monthly Rainfall Based on the TRMM Precipitation Radar Satellite Data Over Region of Indonesia. Ecotrophic 5 (2010) 129-134
  • [26] R.E. Caraka, Supari, M. Tahmid. Copula-based model for rainfall and El-Nino in Banyuwangi Indonesia. Journal of Physics: Conference Series 1008 (2018) 012025
  • [27] S. Nurdiati, A. Sopaheluwakan, A. Agustina, P. Septiawan. Multivariate analysis on Indonesia forest fire using combined empirical orthogonal function and covariance matrix. IOP Conference Series: Earth and Environmental Sciences 299 (2019) 012048
  • [28] S. Rustiana, B.N. Ruchjana, A.S. Abdullah, H. Hermawan, S.B. Sipayung, I.G.N.M. Jaya, Krismianto. Rainfall Prediction of Cimanuk Watershed Regions with Canonical Correlation Analysis (CCA). IOP Conference Series: Journal of Physics, 893 (2016) 012021
  • [29] S.V. Raghavan, J. Liu, N.S. Nguyen, M.T. Vu, S.Y. Loing. Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoritical and Applied Climatology 132 (2018) 989-1002
  • [30] Supari, F. Tangang, L. Juneng, E. Aldrian. Observed Changes in Extreme Temperature and Precipitation over Indonesia. International Journal of Climatology 37 (2016) 1979-1997
  • [31] T. Lian, D. Chen. An evaluation of rotated EOF analysis and its application to tropical pacific SST Variability. Journal of Climate 25 (2012) 5361-5373
  • [32] U. Demsar, P. Harris, C. Brunsdon, A.S. Fotheringham, S. McLoone. Principal component analysis on spatial data: an overview. Annals of the Association of American Geographers, 103 (2013) 106-128
  • [33] X. Zhang, L. Alexander, G.C. Hegerl, P. Jones, A.K. Tank, T.C. Peterson, B. Trewin, F.W. Zwiers. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change Volume 2, Issue 6 (2011) Pages 851-870. https://doi.org/10.1002/wcc.147
  • [34] Y. Liang, M. Mazloff, I. Rosso, S. Fang, J. Yu. A Multi-variate Empirical Orthogonal Function Method to Construct Nitrate Maps in the Southerm Ocean. Journal of Atmospheric and Ocean Technology 35 (2018) 1505-1519
  • [35] Y. Liu, W. Song. Influences of extreme precipitation on China’s mining industry. Sustainability 11 (2019) 6719
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-2f75912d-e781-4e17-8a83-e4e3b8132551
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.