PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 2 | 99-107
Article title

Niedotlenienie guza jako czynnik predykcyjny w radioterapii onkologicznej

Content
Title variants
EN
Tumour hypoxia as a predictive factor for radiotherapy
Languages of publication
EN PL
Abstracts
EN
Radiotherapy is, next to surgery, the basic method of treatment in oncology. The intensive searching of the predictive factors for radiotherapy effectiveness, are still continuing. The mechanism of radiotherapy action depends on the cellular oxygen presence. The latest studies evidence, that the molecular oxygen, through the mechanism of fixation, leads to destruction of the DNA damage, caused by the ionizing radiation, repair. Number of studies has demonstrated, that the tumour hypoxia evaluation correlates with radiotherapy effectiveness. However, the universal method assessing the tumour hypoxia does not exist. Actually used methods, as Eppendorf’s electrode, the molecular markers of hypoxia evaluation, or PET studies with oxydo-reductive radiopharmaceutical agents, bring conflicting results. So, a lot of doubts about the quantitative and qualitative character of relationship between hypoxia and sensitivity for radiotherapy still exist. Moreover, the analysis is impeded by fact, that the hypoxia has significant negative prognostic influence on the treatment results with radiotherapy, through the genome and proteomic changes induction. The paper presents the actual status of knowledge about the influence of tumour hypoxia on radiotherapy effectiveness.
PL
Radioterapia jest obok chirurgii podstawową metodą leczenia nowotworów. Trwają obecnie intensywne poszukiwania czynników predykcyjnych dla skuteczności radioterapii. Mechanizm działania radioterapii zależny jest od obecności tlenu w komórce. Najnowsze doświadczenia dowodzą, że tlen cząsteczkowy poprzez mechanizm fiksacji zaburza naprawę uszkodzeń wywołanych w DNA promieniowaniem jonizującym. Liczne badania wykazały, że ocena niedotlenienia guza koreluje z wynikiem radioterapii. Brak jednak uniwersalnej metody oceniającej hipoksję. Aktualnie stosowane metody, jak pomiar elektrodą Eppendorfa, ocena markerów molekularnych hipoksji czy badania PET z użyciem oksydoredukcyjnych radiofarmaceutyków dostarczają sprzecznych wyników. Istnieje więc wiele wątpliwości co do ilościowego i jakościowego charakteru zależności między niedotlenieniem a wrażliwością na radioterapię. Ponadto analizę utrudnia fakt, że niedotlenienie wywiera znaczny negatywny prognostyczny wpływ na wyniki leczenia radioterapią poprzez indukcję zmian genomowych i proteomicznych. W pracy przedstawiono aktualny stan wiedzy na temat wpływu niedotlenienia guza na skuteczność radioterapii.
Discipline
Publisher

Year
Volume
4
Issue
2
Pages
99-107
Physical description
Contributors
  • Zakład Radioterapii, Wielkopolskie Centrum Onkologii w Poznaniu
  • Oddział Radioterapii i Onkologii Ginekologicznej, Wielkopolskie Centrum Onkologii im. M. Skłodowskiej-Curie w Poznaniu. Kierownik: dr hab. n. med. A. Roszak. Wielkopolskie Centrum Onkologii, Oddział Radioterapii i Onkologii Ginekologicznej, ul. Garbary 15, 61-866 Poznań tel. 061 885 05 87, faks 061 852 19 48
References
  • 1. De Vita V.T.: Principles and Practice in Oncology. 5th ed. Lippincot, Philadelphia 2001.
  • 2. Perez C.A.: Principles and Practice of Radiation Therapy. 4th ed. Lippincot, Philadelphia 2003.
  • 3. Horiot J.C., Begg A.C., Le Fur R. i wsp.: Present status of EORTC trials of hyperfriactionated and accelerated radiotherapy on head and neck carcinoma. Recent Results Cancer Res. 1994; 134: 111.
  • 4. Leibel SA., Phillips TL.: Prediction of Radiation Response. Textbook of Radiation Oncology. 2nd ed. Saunders, Philadelphia 2004.
  • 5. Nordsmark M., Bentzen S.M., Rudat V i wsp.: Prognostic value of tumour oxygenation in 397 head and neck tumours after primary radiation therapy. An multi-center study. Radiother. Oncol. 2005; 77: 18-24.
  • 6. Warters R.L., Hofer K.G., Harris C.R. i wsp.: Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage. Cur. Top. Radiat. Res. Q 1977; 12: 389-407.
  • 7. Khan F.: Physics in Radiation Oncology. 3rd ed. Lippincot, Philadelphia 2003.
  • 8. Steel G.G.: Basic Clinical Radiobiology, 3rd ed. Arnold, London 2003.
  • 9. Radford I.R.: Evidence for a general relationship between the induced level of DNA double-strand breakage and cell killing after X-irradiation of mammalian cells. Int. J. Radiat. Biol. 1986;49:611-620.
  • 10. McMillan T.J., Tobi S., Mateos S. i wsp.: The use of DNA double-strand break quantification in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2001; 49: 373.
  • 11. Whitaker S.J., Ung Y.C., McMillan T.J.: DNA doublestrand break induction and rejoining as determinants of human tumour cell radiosensivity. A pulsed field electrophoresis study. Int. J. Radiat. Biol. 1995; 67: 7-18.
  • 12. Deschner E.E., Gray L.H.: Influence of oxygen tension on x-ray induced chromosomal damage in Ehrlich ascites tumour cells irradiated in vitro and in vivo. Radiat. Res. 1959; 11: 115-149.
  • 13. Michael B.D., Adams G.E., Hewitt H.B. i wsp.: A posteffect of oxygen in irradiated bacteria: a submiliseconds fast mixing study. Radiat. Res. 1973; 54: 239-251.
  • 14. Prise K.M., Gillies N.E., Michael B.D.: Evidence for a hypoxic fixation reaction leading to the induction of ssb and dsb in irradiated DNA. Int. J. Radiat. Oncol. Biol. Phys. 1998; 74: 53-59.
  • 15. Sprong D., Janssen H.L., Vens C. i wsp.: Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int. J. Radiat. Oncol. Biol. Phys. 2006; 64: 562-572.
  • 16. Elkind M.M., Swain R.W, Alescio T. i wsp.: Oxygen, nitrogen, recovery and radiation therapy. W: Cellular Radiation Biology. Williams&Wilkins, Baltimore 1965: 442-461.
  • 17. Henk J.M.: Late results of a trial of hyperbaric oxygen and radiotherapy in head and neck cancer: a rationale for hypoxic cell sensitizers? Int. J. Radiat. Oncol. Biol. Phys. 1986; 12: 1339-1341.
  • 18. Palcic B., Scarsgard L.D.: Reduced oxygen enhancement ratio at low doses of ionizing radiation. Radiat. Res. 1984: 100: 328-339.
  • 19. Scarsgard L.D., Harrison I.: Dose dependance of the oxygen enhancement ratio in radiation inactivation of Chinese hamster V79-171 cells. Radiat. Res. 1991; 127: 243-247.
  • 20. Dasu A., Denekamp J.: New insight into factors influencing the clinically relevant oxygen enhancement ratio. Radio-ther. Oncol. 1998; 46: 269-277.
  • 21. Littbrant B.: Survival characteristics of mammalain cell lines after single or multiple exposures to Roentgen radiation under oxic or anoxic conditions. Acta Radiol. Ther. Phys. Biol. 1970; 9: 257-281.
  • 22. Marples B., Joiner M.C., Skov K.A.: The effect of oxygen on low-dose hypersensitivity and increased radioresistance on Chinese hamster V79-379A cells. Radiat. Res. 1994; 138: S17-S20.
  • 23. Kirkpatrick J.P., Cardenas-Navia L.I., Dewhirst M.W: Predicting the effect of temporal variations in PO2 on tumour radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2004; 59: 822-833.
  • 24. Hockel M., Vaupel P: Tumour hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001; 93: 266-276.
  • 25. Ljungkvist A.S., Bussink J., Kaanders J.H. i wsp.: Hypoxic cell turnover in different solid tumourlines. Int. J. Radiat. Oncol. Biol. Phys. 2005; 62: 1157-1156.
  • 26. Kallman R.F.: The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology 1972; 105: 135-142.
  • 27. Brurberg K.G., Skogmo H.K., Graff B.A., Olsen D.R., Rofstad E.K.: Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumours before and during fractionated radiation therapy. Radiother. Oncol. 2005; 77: 220-226.
  • 28. Horsman M.R., Khalil A.A., Nordsmark M. i wsp.: Relationship between radiobiological hypoxia and direct estimates of tumour oxygenation in a mouse tumour model. Radiother. Oncol. 1993; 28: 69-71.
  • 29. Denekamp J., Dasu A.: Inducible repair and the two forms of tumour hypoxia - time for a paradigmshift. Acta Oncol. 1999; 38: 903-318.
  • 30. Durand R.E., Sham E.: The lifetime of hypoxic human tumour cells. Int. J. Radiat. Oncol. Biol. Phys. 1998; 42: 711-715.
  • 31. Endlich B., Radford I.R., Forrester H.B. i wsp.: Computerised video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apop-tosis in lymphoid cells. Radiat. Res. 2000; 153: 36-48.
  • 32. Brown J.M., Le Q.T.: Tumour hypoxia is important in radiotherapy, but how should we measure it? Int. J. Radiat. Oncol. Biol. Phys. 2002; 54: 1299-1301.
  • 33. Toma-Dasu I., Dasu A., Waites A. i wsp.: Theoretical simulation of oxygen tension measurement in the tissue using a microelectrode: II. Simulated measurements in tissues. Radiother. Oncol. 2002; 64: 109-118.
  • 34. Bussink J., Kaanders J.H., Kogel A.J.: Tumour hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother. Oncol. 2003; 67: 3-15.
  • 35. Kallinowski F., Bander R., Hoeckel M. i wsp.: Tumour tissue oxygenation as evaluated by computerized-PO2-histog-raphy. Int. J. Radiat. Oncol. Biol. Phys. 1990; 19: 953-961.
  • 36. Hockel M., Knoop C., Schlenger K. i wsp.: Intratumoural pO2 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol. 1993; 26: 45-50.
  • 37. Toma-Dasu I., Dasu A., Karlsson M.: Conversion of polarographic electrode measurements - a computer-based-approach. Phys. Med. Biol. 2005; 50: 4581-4591.
  • 38. Harrison L.B., Chadza M.: Impact of tumour hypoxia and anaemia on radiation therapy outcomes. The Oncologist 2002; 7: 492-508.
  • 39. Sorensen M., Horsman M.R., Cumming P. i wsp.: Effect of intratumoural heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode pO2 measurements in murine tumours. Int. J. Radiat. Oncol. Biol. Phys. 2005; 62: 854-861.
  • 40. Arteel G.E., Thurman G.R., Yates J.M. i wsp.: Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 1995; 72: 889-895.
  • 41. Nordsmark M., Loncaster J., Chou S.C. i wsp.: Invasive oxygen measurement and pimonidazole labelling in human cervix carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2001; 49: 581-586.
  • 42. Vordemark D., Kaffer A.: Characterisation of carbonic anhydrase IX (CAIX) as an endogenous marker of chronic hypoxia in live human tumour cells. Int. J. Radiat. Oncol. Biol. Phys. 2005; 61: 1197-1207.
  • 43. Dachs G.U., Tozer G.M.: Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur. J. Cancer 2000; 36: 1649-1660.
  • 44. Kondo A., Safari R., Mishima M. i wsp.: Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res. 2001; 61: 7603-7607.
  • 45. Hoeckel M., Schlenger K., Aral B. i wsp.: Association between tumour hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996; 56: 4509-4515.
  • 46. Reynolds T.Y., Rockwell S., Glazur P.M.: Genetic instability induced by tumour microenvironment. Cancer Res. 1996; 56: 5754-5757.
  • 47. Graeber TG., Osmanian C., Jacks T. i wsp.: Hypoxia-mediated selection of cells with diminished apoptotic potential In solid tumours. Nature 1996; 379: 88-91.
  • 48. Brizel D.M., Scully S.P., Harrelson J.M. i wsp.: Tumour oxygenation predicts for the likelihood of distant metas-tases in human soft tissue sarcoma. Cancer Res. 1996; 56: 941-943.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-2e6047de-536b-42c0-9751-1bd8b521452a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.