Preferences help
enabled [disable] Abstract
Number of results
2019 | 24 | 84 - 95
Article title


Title variants
Languages of publication
Chitosan is one of the most promising polymers for biomedical applications due to its unique properties, such as its biocompatibility, low toxicity, biodegradation, and the presence of reactive amino and hydroxyl groups. Analysis of physicochemical properties of chitosan and its derivatives is a time-consuming process and requires expensive equipment and large amounts of the sample. This paper proposes a method for express analysis of the molecular weight (MW), the degree of deacetylation (DD), the substitution degree (SD), and the charge of chitosan and its derivatives using agarose gel electrophoresis under acidic and neutral conditions with Coomassie staining. Positively charged chitosan samples required acidic Tris Acetate-EDTA (TAE) buffer to move in the gel. The electrophoretic mobility of chitosan depended on MW, DD, SD, and the chitosan charge. Based on the dependences obtained by the proposed method, the MW and DD of commercial chitosan samples were determined. Express analysis of chitosan and its derivatives in agarose gel can be used to monitor the reactions of chitosan modification and to analyse samples with unknown characteristics.
84 - 95
Physical description
  • Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
  • Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • [1] Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-Ch, Cho Ch-S; (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv.; 26; № 1: 1–21. DOI:10.1016/j.biotechadv.2007.07.009.
  • [2] Lyalina T, Zubareva A, Lopatin S, Zubov V, Sizova S, Svirshchevskaya E;(2017) Correlation Analysis of Chitosan Physicochemical Parameters Determined by Different Methods. Org. Med. ChemIJ; 1; № 3: 555562. DOI:10.19080/OMCIJ.2017.01.555562.
  • [3] Kasaai MR, Arul J, Charlet G; (2000) Intrinsic viscosity–molecular weight relationship for chitosan. J. Polym. Sci. PartBPolym. Phisics; 38: 2591–2598. DOI:10.1002/app.1963.070070209.
  • [4] Cowman MK, Chen CC, Pandya M, Yuan H, Ramkishun D, LoBello J, Bhilocha S, Russell-Puleri S, Skendaj E, Mijovic J, Jing W; (2011) Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal. Biochem.; 417; № 1: 50–56. DOI:10.1016/j.ab.2011.05.023.
  • [5] Bhilocha S, Amin R, Pandya M, Yuan H, Tank M, LoBello J, Shytuhina A, Wang W, Wisniewski HG, de la Motte C, Cowman MK; (2011) Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. Anal. Biochem.; 417; № 1: 41–49. DOI:10.1016/j.ab.2011.05.026.
  • [6] Audy P, Asselin A; (1992) Gel electrophoretic analysis of chitosan hydrolysis products. Electrophoresis; 13; № 1: 334–337. DOI:10.1002/elps.1150130167.
  • [7] Mnatsakanyan M, Thevarajah JJ, Roi RS, Lauto A, Gaborieau M, Castignolles P; (2013)Separation of chitosan by degree of acetylation using simple free solution capillary electrophoresis. Anal. Bioanal. Chem.: 405; № 21: 6873–6877. DOI:10.1007/s00216-013-7126-4.
  • [8] Thevarajah JJ, Van Leeuwen MP, Cottet H, Castignolles P, Gaborieau M; (2017)Determination of the distributions of degrees of acetylation of chitosan. Int. J. Biol. Macromol.; 95: 40–48. DOI:10.1016/j.ijbiomac.2016.10.056.
  • [9] Chang S-H, Lin H-T V, Wu G-J, Tsai GJ; (2015)pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym.;134: 74–81. DOI:10.1016/j.carbpol.2015.07.072.
  • [10] Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M; (2009) Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res.; 344; № 13: 1690–1696. DOI:10.1016/j.carres.2009.05.006.
  • [11] Kumirska J, Weinhold M X, Thöming J, Stepnowski P; (2011) Biomedical activity of chitin/chitosan based materials- influence of physicochemical properties apart from molecular weight and degree of N-Acetylation. Polymers.; 3; № 4: 1875–1901. DOI:10.3390/polym3041875.
  • [12] Shagdarova BTs, Ilyina AV, Lopatin SA, Kartashov MI, Arslanova LR, Dzhavakhiya VG, Varlamov VP; (2018) Study of the Protective Activity of Chitosan Hydrolyzate Against Septoria Leaf Blotch of Wheat and Brown Spot of Tobacco. Appl. Biochem. Microbiol.; 54; № 1: 71–75. DOI:10.7868/S0555109918010099.
  • [13] Konovalova MV, Kurek DV, Litvinets SG, Martinson EA, Varlamov VP; (2016) Preparation and characterization of cryogels based on pectin and chitosan. Prog. Chem. Appl. Chitin its Deriv.; XXI: 114–121. Doi:10.15259/PCACD.21.12.
  • [14] Lim S-H, Hudson SM; (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res.; 339; № 2: 313–319. DOI:10.1016/j.carres.2003.10.024.
  • [15] Ilyina AV, Varlamov VP; (2004)Effect of physicochemical parameters on the formation of chitosan-based gels. Appl. Biochem. Microbiol.; 40; № 6: 599–602. DOI:10.1023/B:ABIM.0000046997.46480.88.
  • [16] Yamaguchi R, Arai Y, Itoh T, Hirano S; (1981)Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohydr. Res.; 88; № 1: 172–175. DOI:10.1016/S0008-6215(00)84614-5.
  • [17] Lopatin SA, Derbeneva MS, Kulikov SN, Varlamov VP, Shpigun OA; (2009) Fractionation of chitosan by ultrafiltration. J. Anal. Chem.; 64; № 6: 648–651. DOI10.1134/S1061934809060197.
  • [18] Zubareva A, Shagdarova B, Varlamov V, Kashirina E, Svirshchevskaya E; (2017) Penetration and toxicity of chitosan and its derivatives.European Polymer Journal;93: 743-749. Doi:10.1016/j.eurpolymj.2017.04.021.
  • [19] Свирщевская ЕВ, Зубарева АА, Бойко АА, Шустова ОА, Гречихина МВ, Шагдарова БЦ, Варламов ВП; (2016) Анализ токсичности и биосовместимости производных хитозана с различными физико-химическими свойствами. Прикладная биохимия и микробиология; 52; № 5: 467–475. Doi:10.7868/S0555109916050159.
  • [20] Kubota N, Tatsumoto N, Sano T, Toya K; (2000) A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydrate Research; 324: 268–274.
  • [21] Luque-Alcaraz AG, Lizardi J, Goycoolea FМ, Valdez MA, Acosta AL, Iloki-Assanga SB, Higuera-Ciapara I, Argüelles-Monal W; (2012) Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. J. Nanomater.; 2012: 1-7. DOI:10.1155/2012/265161.
  • [22] Meng-Lund E, Muff-Westergaard C, Sander C, Madelung P, Jacobsen J; (2014) A mechanistic based approach for enhancing buccal mucoadhesion of chitosan. Int. J. Pharm.; 461; № 1–2: 280–285. DOI:10.1016/j.ijpharm.2013.10.047
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.