PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 149 | 36-51
Article title

Modified Integrated Nuclear Model for the Binding Energy of Finite Nuclei

Content
Title variants
Languages of publication
EN
Abstracts
EN
A modified integrated nuclear model (MINM) for calculating the binding energies of finite nuclei is proposed. The model is an improvement of the integrated nuclear model (INM) that was formulated based on the theory of quantum chromodynamics. MINM is a simple model that depends on the proton and neutron numbers, and a variable stability coefficient factor denoted by λ. The variable λ rectifies the inequality in the neutron to proton ratio that results from the increase in the size of the nucleus. The results of the binding fraction obtained from MINM were compared with the existing experimental data obtained from atomic mass evaluation tables, AME2016. It was found that, the root mean square deviation for the binding fractions obtained from MINM is 0.2267 MeV with respect to the experimental data, while the root mean square deviation for the binding fraction obtained from INM is 1.5801 MeV. The root mean square deviation for MINM is very small. This supports the validity of the MINM and the consequent accuracy in the values of the binding fraction for different nuclei, especially in the region whereby A>220.
Discipline
Year
Volume
149
Pages
36-51
Physical description
Contributors
  • Department of Physics, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya
  • Department of Physics, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya
References
  • [1] Reid, J. M. (1984). The atomic nucleus. Manchester University Press.
  • [2] Ghoshal, S. N. (2008). Nuclear physics. S. Chand Publishing.
  • [3] Davies, P. C. W., & Brown, J. R. (1993). The ghost in the atom: a discussion of the mysteries of quantum physics. Cambridge University Press.
  • [4] Michimasa, S., Kobayashi, M., Kiyokawa, Y., Ota, S., Ahn, D. S., Baba, H., & Ideguchi, E. (2018). Magic Nature of Neutrons in Ca 54: First Mass Measurements of Ca 55–57. Physical Review Letters, 121(2), 022506
  • [5] Adamian, G. G., Antonenko, N. V., Diaz-Torres, A., & Heinz, S. (2020). How to extend the chart of nuclides? The European Physical Journal A, 56(2), 1-51
  • [6] National Research Council. (1986). Nuclear physics. National Academy Press.
  • [7] Rabinowitz, M. (2015). General derivation of mass-energy relation without electrodynamics or Einstein’s postulates. Journal of Modern Physics, 6(09), 1243
  • [8] Chemogos, P. K., Muguro, K. M., & Khanna, K. M. (2019). Modified Phenomenological Formula for the Ground State Energy of Light Nuclei. World Scientific News, 136, 148-158
  • [9] Oganessian, Y. (2012). Nuclei in the Island of Stability of Superheavy Elements. Journal of Physics-Conference Series Vol. 337, No. 1, p. 012005
  • [10] Williams, M. (2016). What is binding energy? Universe Today: Space and Astronomy News
  • [11] Oganessian, Y. T., & Utyonkov, V. K. (2015). Super-heavy element research. Reports on Progress in Physics, 78(3), 036301
  • [12] Weizsäcker, C. F. V. (1935). On the theory of nuclear masses. Journal of Physics, 96, 431-458
  • [13] Mishra, A., Gupta, T., & Sahu, B. (2016). Estimation of Nuclear Separation Energy and Its Relation with Q Value. International Journal of Applied Physics and Mathematics, 6(1), 17
  • [14] Bohr, N., & Wheeler, J. A. (1939). The mechanism of nuclear fission. Physical Review, 56(5), 426.
  • [15] Bethe, H. A., & Bacher, R. F. (1936). Nuclear physics A. Stationary states of nuclei. Reviews of Modern Physics, 8(2), 82
  • [16] Dai, H., Wang, R., Huang, Y., & Chen, X. (2017). A novel nuclear dependence of nucleon–nucleon short-range correlations. Physics Letters B, 769, 446-450
  • [17] Heyde, K. (2004). Basic ideas and concepts in nuclear physics: an introductory approach. CRC Press.
  • [18] Royer, G. (2000). Alpha emission and spontaneous fission through quasi-molecular shapes. Journal of Physics G: Nuclear and Particle Physics, 26(8), 1149
  • [19] Kirson, M. W. (2008). Mutual influence of terms in a semi-empirical mass formula. Nuclear Physics A, 798(1-2), 29-60
  • [20] Ghahramany, N., Gharaati, S., & Ghanaatian, M. (2012). New approach to nuclear binding energy in integrated nuclear model. Journal of Theoretical and Applied Physics, 6(1), 3.
  • [21] Bailey, D. (2011). Semi-empirical nuclear mass formula. PHY357: Strings & Binding Energy. University of Toronto, 03-31
  • [22] Samanta, C., Chowdhury, P. R., & Basu, D. N. (2006). Generalized mass formula for non-strange and hypernuclei with SU (6) symmetry breaking. Journal of Physics G: Nuclear and Particle Physics, 32(3), 363
  • [23] Chowdhury, P. R., Samanta, C., & Basu, D. N. (2005). Modified Bethe–Weizsäcker Mass Formula with Isotonic Shift and new Driplines. Modern Physics Letters A, 20(21), 1605-1618
  • [24] Sirma, K. K., Chelimo, L. S., & Khanna, K. M. (2020). A modified Nuclear Model for Binding Energy of Nuclei. World Scientific News, 143, 203-223
  • [25] Seshavatharam, U. V. S., & Lakshminarayana, S. (2017). Simplified Form of the Semi-empirical Mass Formula. Prespacetime Journal, Volume 8, Issue 4, pp. 881-890
  • [26] Mahdi Joharifard and Mohammad Reza Pahlavani. (2018). Binding Energies of Deformed Super Heavy Nuclei with Z ≥ 105. BAOJ Physics, 3, 28
  • [27] Van Isacker, P. (2007). Global and local nuclear mass formulas. In XXX Mazurian Lakes Conference Nuclear Physics and The Fundamental Processes, Vol. 39, pp. 421-431
  • [28] Kolesnikov, N. N. (2016). The binding energies and stability of heavy and superheavy nuclei. Moscow University Physics Bulletin, 71(4), 381-388
  • [29] Hwang, M. Y. The E-space Inter-Domain Interaction Potential (EIDIP) Model. Retrieved from: https://www.researchgate.net/publication/235782325
  • [30] Hwang, M. Y. (2013). EIDIP nuclear charge radii model. Retrieved from: https://www.researchgate.net/profile/Michael_Hwang/publication/235782273
  • [31] Audi, G., Wapstra, A. H., & Thibault, C. (2003). The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nuclear Physics A, 729(1), 337-676
  • [32] Ghahramany, N., Hora, H., Miley, G. H., Philberth, K., & Osman, F. (2008). Nuclear magic numbers based on a quark-like model is compared with the Boltzmann distribution model from nuclear abundance in the universe and low energy nuclear reactions. Physics Essays, 21(3), 200-206
  • [33] Ghahramany, N., Ghanaatian, M., & Hooshmand, M. (2007). Quark-gluon plasma model and origin of magic numbers. Iranian Physical Journal, 1-2, 35
  • [34] Ghahramany, N., Gharaati, S., Ghanaatian, M., & Hora, H. (2011). New scheme of nuclide and nuclear binding energy from quark-like model. Iranian Journal of Science and Technology (Sciences), 35(3), 201-208
  • [35] Ghahramany, N., Sarafraza, H., & Yazdankish, E. (2013). Stability and mass parabola in integrated nuclear model. Universal Journal of Physics and Application, 1(1), 18-25.
  • [36] Seshavatharam, U. V. S., & Lakshminarayana, S. A (2020). A new kind of unified nuclear binding energy formula and its consequences. Retrieved from: https://doi.org/10.35543/osf.io/qyge6
  • [37] Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., & Xu, X. (2017). The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chinese Physics C, 41(3), 030003
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-2d63878c-258d-49bc-92a1-0bc064d139f7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.