Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

36-51

Physical description

Contributors

author

- Department of Physics, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya

author

- Department of Physics, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya

References

- [1] Reid, J. M. (1984). The atomic nucleus. Manchester University Press.
- [2] Ghoshal, S. N. (2008). Nuclear physics. S. Chand Publishing.
- [3] Davies, P. C. W., & Brown, J. R. (1993). The ghost in the atom: a discussion of the mysteries of quantum physics. Cambridge University Press.
- [4] Michimasa, S., Kobayashi, M., Kiyokawa, Y., Ota, S., Ahn, D. S., Baba, H., & Ideguchi, E. (2018). Magic Nature of Neutrons in Ca 54: First Mass Measurements of Ca 55–57. Physical Review Letters, 121(2), 022506
- [5] Adamian, G. G., Antonenko, N. V., Diaz-Torres, A., & Heinz, S. (2020). How to extend the chart of nuclides? The European Physical Journal A, 56(2), 1-51
- [6] National Research Council. (1986). Nuclear physics. National Academy Press.
- [7] Rabinowitz, M. (2015). General derivation of mass-energy relation without electrodynamics or Einstein’s postulates. Journal of Modern Physics, 6(09), 1243
- [8] Chemogos, P. K., Muguro, K. M., & Khanna, K. M. (2019). Modified Phenomenological Formula for the Ground State Energy of Light Nuclei. World Scientific News, 136, 148-158
- [9] Oganessian, Y. (2012). Nuclei in the Island of Stability of Superheavy Elements. Journal of Physics-Conference Series Vol. 337, No. 1, p. 012005
- [10] Williams, M. (2016). What is binding energy? Universe Today: Space and Astronomy News
- [11] Oganessian, Y. T., & Utyonkov, V. K. (2015). Super-heavy element research. Reports on Progress in Physics, 78(3), 036301
- [12] Weizsäcker, C. F. V. (1935). On the theory of nuclear masses. Journal of Physics, 96, 431-458
- [13] Mishra, A., Gupta, T., & Sahu, B. (2016). Estimation of Nuclear Separation Energy and Its Relation with Q Value. International Journal of Applied Physics and Mathematics, 6(1), 17
- [14] Bohr, N., & Wheeler, J. A. (1939). The mechanism of nuclear fission. Physical Review, 56(5), 426.
- [15] Bethe, H. A., & Bacher, R. F. (1936). Nuclear physics A. Stationary states of nuclei. Reviews of Modern Physics, 8(2), 82
- [16] Dai, H., Wang, R., Huang, Y., & Chen, X. (2017). A novel nuclear dependence of nucleon–nucleon short-range correlations. Physics Letters B, 769, 446-450
- [17] Heyde, K. (2004). Basic ideas and concepts in nuclear physics: an introductory approach. CRC Press.
- [18] Royer, G. (2000). Alpha emission and spontaneous fission through quasi-molecular shapes. Journal of Physics G: Nuclear and Particle Physics, 26(8), 1149
- [19] Kirson, M. W. (2008). Mutual influence of terms in a semi-empirical mass formula. Nuclear Physics A, 798(1-2), 29-60
- [20] Ghahramany, N., Gharaati, S., & Ghanaatian, M. (2012). New approach to nuclear binding energy in integrated nuclear model. Journal of Theoretical and Applied Physics, 6(1), 3.
- [21] Bailey, D. (2011). Semi-empirical nuclear mass formula. PHY357: Strings & Binding Energy. University of Toronto, 03-31
- [22] Samanta, C., Chowdhury, P. R., & Basu, D. N. (2006). Generalized mass formula for non-strange and hypernuclei with SU (6) symmetry breaking. Journal of Physics G: Nuclear and Particle Physics, 32(3), 363
- [23] Chowdhury, P. R., Samanta, C., & Basu, D. N. (2005). Modified Bethe–Weizsäcker Mass Formula with Isotonic Shift and new Driplines. Modern Physics Letters A, 20(21), 1605-1618
- [24] Sirma, K. K., Chelimo, L. S., & Khanna, K. M. (2020). A modified Nuclear Model for Binding Energy of Nuclei. World Scientific News, 143, 203-223
- [25] Seshavatharam, U. V. S., & Lakshminarayana, S. (2017). Simplified Form of the Semi-empirical Mass Formula. Prespacetime Journal, Volume 8, Issue 4, pp. 881-890
- [26] Mahdi Joharifard and Mohammad Reza Pahlavani. (2018). Binding Energies of Deformed Super Heavy Nuclei with Z ≥ 105. BAOJ Physics, 3, 28
- [27] Van Isacker, P. (2007). Global and local nuclear mass formulas. In XXX Mazurian Lakes Conference Nuclear Physics and The Fundamental Processes, Vol. 39, pp. 421-431
- [28] Kolesnikov, N. N. (2016). The binding energies and stability of heavy and superheavy nuclei. Moscow University Physics Bulletin, 71(4), 381-388
- [29] Hwang, M. Y. The E-space Inter-Domain Interaction Potential (EIDIP) Model. Retrieved from: https://www.researchgate.net/publication/235782325
- [30] Hwang, M. Y. (2013). EIDIP nuclear charge radii model. Retrieved from: https://www.researchgate.net/profile/Michael_Hwang/publication/235782273
- [31] Audi, G., Wapstra, A. H., & Thibault, C. (2003). The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nuclear Physics A, 729(1), 337-676
- [32] Ghahramany, N., Hora, H., Miley, G. H., Philberth, K., & Osman, F. (2008). Nuclear magic numbers based on a quark-like model is compared with the Boltzmann distribution model from nuclear abundance in the universe and low energy nuclear reactions. Physics Essays, 21(3), 200-206
- [33] Ghahramany, N., Ghanaatian, M., & Hooshmand, M. (2007). Quark-gluon plasma model and origin of magic numbers. Iranian Physical Journal, 1-2, 35
- [34] Ghahramany, N., Gharaati, S., Ghanaatian, M., & Hora, H. (2011). New scheme of nuclide and nuclear binding energy from quark-like model. Iranian Journal of Science and Technology (Sciences), 35(3), 201-208
- [35] Ghahramany, N., Sarafraza, H., & Yazdankish, E. (2013). Stability and mass parabola in integrated nuclear model. Universal Journal of Physics and Application, 1(1), 18-25.
- [36] Seshavatharam, U. V. S., & Lakshminarayana, S. A (2020). A new kind of unified nuclear binding energy formula and its consequences. Retrieved from: https://doi.org/10.35543/osf.io/qyge6
- [37] Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., & Xu, X. (2017). The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chinese Physics C, 41(3), 030003

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-2d63878c-258d-49bc-92a1-0bc064d139f7