Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 14 | 56-69

Article title

Ballen silica, a post-impact marker – an overview

Authors

Content

Title variants

EN
Krzemionka groniasta jako marker pouderzeniowy – przegląd

Languages of publication

EN

Abstracts

EN
The paper presents an overview of the literature data and the author’s original data on ballen silica structures occurring in impactites. These structures have been discovered in more than 30 astroblemes, in various types of rocks metamorphosed by impact. Ballen structures show variations in their macromorphology as well as at the micro level in relation to single clasts or their clusters. The micro-level variations are related to the extinction of polarised light of ballen clast units, their stage of development, recrystallisation and other characteristics. Ballen structures appear as fine-grained, coarse-grained or domain mosaics. The latter may have a concentric or side-by-side pattern. Researchers link ballen structures with the transformations of silica polymorphs, crystalline ones such as cristobalite and quartz and amorphous ones such as diaplectic quartz glass or lechatelierite. Another hypothesis is that ballen structures are formed as a result of the embedding of cooled quartz clasts in an overheated rock melt. Considering the complexity of the post-impact processes, any scientific interpretation of the formation of ballen silica clasts is valid. Deposition of phyllosilicate minerals in the areas of contact between clast units is important for the mechanical stability of the clast. Post-impact dynamics can result in the release of clasts as well as their individual units and their addition to the created suevite breccias containing spherules. Thus, ballen structures can be considered as indicators of changes occurring shortly after a meteorite impact.
PL
Artykuł jest przeglądem danych literaturowych wraz z suplementem oryginalnych danych autora na temat struktur krzemionki groniastej (ang. ballen silica) występujących w impaktytach. Klast takiej krzemionki przypomina owocostan winorośli, grono, stąd nazwa polska. Termin krzemionka groniasta ma znaczenie szersze niż termin kwarc groniasty (ang. ballen quartz), często spotykany w literaturze. Struktury te odkryto w ponad 30 astroblemach, w różnych typach skał przekształconych przez impakt meteorytu, najczęściej w stopach skalnych, brekcjach, również w brekcji suewitu, natomiast rzadziej w zmetamorfizowanych skałach podłoża struktury impaktowej. Struktury groniaste wykazują zmienność makromorfologiczną (wielkość, kształt) oraz na poziomie mikro w odniesieniu do pojedynczych klastów lub ich skupień. Zmienność na poziomie mikro ujawnia się w stopniu wygaszania światła spolaryzowanego pomiędzy jednostkami w groniastym klaście, ich etapem rozwoju, rekrystalizacją i innymi cechami. Struktury groniaste krzemionki pojawiają się jako mozaiki drobnoziarniste, gruboziarniste lub domenowe. Te ostatnie mogą mieć wzór koncentryczny lub obokleżny. Badacze łączą struktury groniaste z przemianami polimorfów krzemionki, krystalicznych, takich jak krystobalit i kwarc, oraz amorficznych, takich jak diaplektyczne szkliwo kwarcowe czy lechatelieryt. Inna hipoteza głosi, że struktury groniaste powstają w wyniku zatapiania chłodnych klastów kwarcowych, wcześniej uwolnionych z impaktytów w dynamicznych procesach pouderzeniowych, w przegrzanym stopie, kolejno szybko schładzanym. Biorąc pod uwagę złożoność procesów zachodzących po impakcie, każda naukowa interpretacja powstawania klastów krzemionki groniastej powinna być uważana za cenny element poznania dynamiki procesów pouderzeniowych. Powstawanie minerałów krzemianów warstwowych w obszarach styku jednostek składowych groniastego klastu jest istotne w odniesieniu do jego mechanicznej stabilności. Dynamika pouderzeniowa może skutkować uwalnianiem klastów oraz ich jednostek składowych i dodawaniem ich do tworzonych brekcji suewitu zawierających szkliste sferule. Specyfika współwystępowania planarnych struktur deformacyjnych w kwarcu (PDF) i struktur groniastych dowodzi, że te drugie powstają w fazie pouderzeniowej modyfikacji krateru i impaktytów. Groniaste struktury krzemionki można uznać za wskaźnik zmian zachodzących wkrótce po uderzeniu meteorytu, podczas schładzania stopów skalnych i powstawania brekcji impaktowych.

Discipline

Year

Volume

14

Pages

56-69

Physical description

Contributors

  • Faculty of Biological Sciences, University of Wrocław

References

  • Chanou A., Grieve R.A.F., Osinski G.R., 2015, Formation of ballen in silica by thermal shock, LPI Contribution, 1861, p.1112.
  • Cox M.A., Cavosie A.J., Ferričre L., Timms N.E., Bland P.A.,, Miljković K., Erickson T.M., Hess B., 2019, Shocked quartz in polymict impact breccia from the Upper Cretaceous Yallalie impact structure in Western Australia, Meteoritics & Planetary Science, 54, 621–637.
  • Bischoff A., Stöffler D., 1984, Chemical and structural changes induced by thermal annealing of shocked feldspar inclusions in impact melt rocks from Lappajärvi crater, Finland, Journal of Geophysical Research, 89, B645–B656.
  • Boamah D., Koeberl C., 2006, Petrographic studies of “fallout” suevite from outside the Bosumtwi impact structure, Ghana, Meteoritics & Planetary Science, 41, 1761–1774.
  • Buchner E., Schwarz W.H., Schmieder M., Trieloff M., 2010, Establishing a 14.6±0.2 Ma age for the Nördlinger Ries impact (Germany)—A prime example for concordant isotopic ages from various dating materials, Meteoritics & Planetary Science, 45, 662–674, doi:10.1111/j.1945-5100.2010.01046.x
  • Dressler B.O., Crabtree D., Schuraytz B.C., 1997, Incipient melt formation and devitrification at the Wanapitei impact structure, Ontario, Canada, Meteoritics & Planetary Science, 32, 249–258, doi:10.1111/j.1945-5100.1997.tb01263.x
  • Engelhardt von W., 1972, Shock produced rock glasses from the Ries crater, Contr. Mineral. and Petrol., 36, 265–292.
  • Engelhardt von W., Arndt J., Fecker B., Pankau H.G., 1995, Suevite breccia from the Ries crater, Germany: Origin, cooling history and devitrification of impact glasses, Meteoritics, 30, 279–293.
  • Ernstson K., 2020, Evidence of meteorite impact-induced thermal shock in quartz, In: Modern Problems of Theoretical, Experimental and Applied Mineralogy, Yushkin Readings, 361–362.
  • Ferričre L., Koeberl C., Reimold W.U., Libowitzky E., Greshake A., 2008, Ballen quartz and cristobalite in impact breccias: types, occurrence, and possible origin, Large Meteorite Impacts and Planetary Evolution IV, LPI Contribution 1423, paper 3011.
  • Ferričre L., Koeberl C., Reimold W.U., 2009a, Characterisation of ballen quartz and cristobalite in impact breccias: new observations and constraints on ballen formation, European Journal of Mineralogy, 21, 203–217.
  • Ferričre L., Koeberl C., Reimold W.U,. Hecht L., Bartosova K., 2009b, The origin of „toasted“ quartz in impactites revisited, Lunar and Planetary Science Conference, 40, 1751.
  • Ferričre L., Koeberl C., Libowitzky E., Reimold W.U., Greshake A., Brandstätter F., 2010, Ballen quartz and cristobalite in impactites: New investigations. In: R.L. Gibson, W.U. Reimold. (Eds) Large meteorite impacts and planetary evolution IV, 609–618, GSA Special Paper 465, Geological Society of America, Boulder, Colorado.
  • Frančišković-Bilinski S., Sikder A.M., Bilinski H., Castano C.E., Garman G.C., 2015, Traces of meteorite impact in the sediments of karstic Dobra River (Croatia), International Multidisciplinary Scientific GeoConference: SGEM; Sofia, vol.1, Sofia: Surveying Geology & Mining Ecology Management, 507–514.
  • Grieve A.F., Reny G., Gurov E.P., Ryabenko V.A., 1987, The melt rocks of the Boltysh impact crater, Ukraine, USSR, Contributions to Mineralogy and Petrology, 96, 56–62.
  • Grieve R.A.F., Langenhorst F., Stöffler D., 1996, Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience, Meteoritics & Planetary Science, 31, 6–35.
  • Gurov E.P., Koeberl C., Reimold W.U., Brandstätter F., Amare K., 2005, Shock metamorphism of siliceous volcanic rocks of the El’gygytgyn impact crater (Chukotka, Russia). In: Large meteorite impacts III, T. Kenkmann, F. Hörz, A. Deutsch, (Eds) Geological Society of America, Special Paper 384, 391–412.
  • Harris R.S., Schultz P.H., Bunch T., 2005, Evidence for shocked feldspars and ballen quartz in 450,000 year old Argentine impact melt breccias, Lunar and Planetary Science, 36, 1966.
  • Jackson J.C., Horton J.W. Jr., Chou I-M., Belkin H.E., 2016, Coesite in suevites from the Chesa-peake Bay impact structure, Meteoritics & Planetary Science, 51, 946–965.
  • Kalleson E., Dypvik H., Nilsen O., 2010, Melt-bearing impactites (suevite and impact melt rock) within the Gardnos structure, Norway, Meteoritics & Planetary Science, 45, 798–827.
  • Kettrup B., Deutsch A., Masaitis V.L., 2003, Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia, Geochimica et Cosmochimica Acta, 67, 733–750.
  • Kosina R., 2017, Impaktyty astroblemy Ilińce, Ukraina, Acta Societatis Metheoriticae Polonorum, 8, 45–55.
  • Kosina R., 2019, Skały impaktowe struktury Puczeż-Katunki, platforma wschodnio-europejska, Rosja, Acta Societatis Metheoriticae Polonorum, 10, 74–91.
  • Kosina R., Madej S., 2020, Remarks on a specimen of the ‘Gardnos breccia’, Norway, Acta Societatis Metheoriticae Polonorum, 11, 41–55.
  • Okumura T., Gucsik A., Nishido H., Ninagawa K., Toyoda S., 2009, Cathodoluminescence microcharacterization of ballen silica in impactites, CP1163, pp.148–154. In: Micro-Raman Spectroscopy and Luminescence Studies in the Earth and Planetary Sciences, A. Gucsik (Ed.), American Institute of Physics 978-0-7354-0700-8/09/$25.00
  • Osinski G.R., 2004, Impact melt rocks from the Ries structure, Germany: an origin as impact melt flows? Earth and Planetary Science Letters, 226, 529–543.
  • Osinski G.R., 2007, Impact metamorphism of CaCO3-bearing sandstones at the Haughton structure, Canada, Meteoritics & Planetary Science, 42, 1945–1960.
  • Pati J.K., Reimold W.U., Koeberl C., Pati P., 2008,The Dhala structure, Bundelkhand craton, Central India – eroded remnant of a large Paleoproterozoic impact structure, Meteoritics & Planetary Science, 43, 1383–1398.
  • Pati J.K., Poelchau M.H., Reimold W.U., Nakamura N., Kuriyama Y., Singh A.K., 2019, Documentation of shock features in impactites from the Dhala impact structure, India, Meteoritics & Planetary Science, 54, 2312–2333, doi:10.1111/maps.13369
  • Sapers H.M., Osinski G.R., Banerjee N.R., Ferriere L., Lambert P., Izawa M.R.M., 2014, Revisiting the Rochechouart impact structure, France, Meteoritics & Planetary Science, 49, 2152–2168.
  • Schmieder M., Buchner E., 2007, Is ‘‘ballen quartz’’ diagnostic for shock metamorphism?, Geochimica et Cosmochimica Acta, 71, A897.
  • Schmieder M., Buchner E., Kröchert J., 2009, ‘Ballen silica’ in impactites and magmatic rocks, 40th Lunar and Planetary Science Conference, 1020.
  • Schmieder M., Jourdan F., Tohver E., Cloutis E.A., 2014, 40Ar/39Ar age of the Lake Saint Martin impact structure (Canada) – Unchaining the Late Triassic terrestrial impact craters, Earth and Planetary Science Letters, 406, 37–48.
  • Sears D.W.G., Huang S., Akridge G., Benoit P., 1996, Glassy spherules in suevite from the Reis crater, Germany, with implications for the formation of meteoritic chondrules, Lunar and Planetary Science, 27, 1165–1166.
  • Short N.M., 1970, Progressive shock metamorphism of quartzite ejecta from the Sedan nuclear explosion crater, The Journal of Geology, 78, 705–723.
  • Smith JJ, Therriault AM, Pan Y., 1999, Ballen quartz from the Deep Bay impact structure, Meteoritics & Planetary Science, 34, 110–111.
  • Trepmann C.A., Dellefant F., Kaliwoda M., Hess K-U., Schmahl W.W., Hölzl S., 2020, Quartz and cristobalite ballen in impact melt rocks from the Ries impact structure, Germany, formed by dehydration of shock-generated amorphous phases, Meteoritics & Planetary Science, 55, 2360–2374.
  • Vrána S., Mrlina J., Škoda R., Halodová P., 2019, Zalužany – a circular structure in the Czech Republic accompanied by glass of granodiorite composition, Journal of Geosciences, 64, 3–18.
  • Whitehead J., Grieve R.A.F., Spray J.G., 2002a, Mineralogy and petrology of melt rocks from the Popigai impact structure, Siberia, Meteoritics & Planetary Science, 37, 623–647.
  • Whitehead J., Spray J.G., Grieve R.A.F., 2002b, Origin of ‘‘toasted’’ quartz in terrestrial impact structures, Geology, 30, 431–434.
  • Zamiatina D.A., Zamyatin D.A., Mikhalevskii G.B., 2022, Ballen quartz in Jänisjärvi impact melt rock with high concentrations of Fe, Mg, and Al: EPMA, EDS, EBSD, CL, and Raman Spectroscopy, Minerals, 12, 886, doi:10.3390/min12070886

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-2a066de2-a210-4934-88b8-16d83687ef52
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.