Preferences help
enabled [disable] Abstract
Number of results
2016 | 36 | 1-11
Article title

Quark star model with Tolman VII Type Potential

Title variants
Languages of publication
In this paper, we studied the behavior of relativistic objects with charged anisotropic matter distribution within the framework of MIT-Bag Model considering Tolman VII form for the gravitational potential Z. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. In the obtained solution there is a singularity in the charge density. We show as the presence of an electrical field causes a modification in the radial pressure, the tangential pressure, the anisotropic factor and the mass of the stellar object.
Physical description
  • Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
  • [1] Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367 .
  • [2] Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173.
  • [3] Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
  • [4] Komathiraj, K., and Maharaj, S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093.
  • [5] Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of static charged stars, Gen. Rel. Grav., 33, 999-110.
  • [6] Bowers, R. L., Liang, E. P. T.: Astrophys. J., 188, 657 (1974).
  • [7] Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J. Math. Phys., 22(1), 118.
  • [8] Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav., 26(1), 75-84.
  • [9] Sokolov. A.I. (1980), Sov. Phys. JETP., 52, 575
  • [10] Usov, V. V., Phys. Rev. D, 70, 067301 (2004).
  • [11] Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811.
  • [12] Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
  • [13] Malaver, M. AASCIT Communications, 1, 48-51 (2014).
  • [14] Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linearequation of state, Class. Quantum Gravity, 25, 235001.
  • [15] Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J. Plus., 129, 3.
  • [16] Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA - Journal of physics, 81(2), 275-286.
  • [17] Sunzu, J.M, Maharaj, S.D and Ray, S.(2014). Astrophysics. Space. Sci. 354, 517- 524
  • [18] Feroze, T.. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
  • [19] Feroze, T., Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947.
  • [20] Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications, 1(1), 9-15.
  • [21] Malaver, M.(2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application, 2(1), 1-6.
  • [22] Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen. Rel. Grav., 45, 1951-1969.
  • [23] Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropicequation of state, PRAMANA - Journal of physics, 78(5), 687-696.
  • [24] Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
  • [25] Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming. 3, 309-313.
  • [26] Thirukkanesh, S., and Ragel, F.C. (2014). Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352(2), 743-749.
  • [27] Bhar, P., Murad, M.H. and Pant, N. (2015). Relativistic anisotropic stellar models with Tolman VII spacetime, Astrophysics and Space Science, 359(13). DOI: 10.1007/s10509-015-2462-9.
  • [28] Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys, D13, 149-156.
  • [29] Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev. D27, 328-331.
  • [30] Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.