PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 145 | 180-197
Article title

Unrestricted division by zero as multiplication by the – reciprocal to zero – infinity

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
It is demonstrated that quite unrestricted operation of conventional division by the real number zero can be implemented via multiplication by the – reciprocal to zero – ascending infinity in paired dual reciprocal spaces, provided that the “real” zero and the infinity are mutually reciprocal (i.e. multiplicatively inverse). Since the infinity is not an absolute concept independent of the particular circumstances in which it is being determined, the value of the setvalued infinity is not fixed but depends on an influence function that is usually applied for evaluation of integral kernels, the operations proposed here are always defined relative to a certain abstract influence function. The conceptual and operational validity of the proposed unrestricted division and multiplication by zero, is authenticated operationally by fairly simple example, using an evaluation of Frullani’s integral.
Discipline
Year
Volume
145
Pages
180-197
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
References
  • [1] Czajko J. New product differentiation rule for paired scalar reciprocal functions. World Scientific News 144 (2020) 358-371
  • [2] Czajko J. Pairing of infinitesimal descending complex singularity with infinitely ascending, real domain singularity. World Scientific News 144 (2020) 56-69
  • [3] Cheng E. Beyond infinity. An expedition to the outer limits of mathematics. New York: Basic Books, 2017, p.13ff.
  • [4] Rudin W. Real and complex analysis. New Delhi: McGraw-Hill, 2006, p.18f.
  • [5] Maurin K. Analysis II: Integration, distributions, holomorphic functions, tensor and harmonic analysis. Dordrecht: Reidel, 1980, pp.65,726.
  • [6] Page A. Mathematical analysis and techniques II. Oxford: Oxford Univ. Press, 1974, p.230.
  • [7] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(4) (2018) 171-197
  • [8] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(4) (2018) 190-216
  • [9] Czajko J. Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals. World Scientific News 132 (2019) 98-120
  • [10] Czajko J. Dual reciprocal scalar potentials paired via differential operators in Frenet frames make the operators to act simultaneously in each of two paired 3D reciprocal spaces. World Scientific News 137 (2019) 96-118
  • [11] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. International Letters of Chemistry, Physics and Astronomy 50 (2015) 117-142
  • [12] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. International Letters of Chemistry, Physics and Astronomy 36 (2014) 220-235
  • [13] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. International Letters of Chemistry, Physics and Astronomy 41 (2015) 45-72.
  • [14] Stein S.K. & Barcellos A. Calculus and analytic geometry. New York: McGraw-Hill Book, 1992, pp.87,134,228.
  • [15] Jeffrey A. Handbook of mathematical formulas and integrals. San Diego: Academic Press, 2000, p.87.
  • [16] Stroud K.A. & Booth D. Advanced engineering mathematics. New York: Industrial Press, 2003, p.275.
  • [17] Thomas G.B., Jr. & Finney R.L. Calculus and analytic geometry II. Reading, MA: Addison-Wesley, 1996, p.998.
  • [18] Gellert W. et al (Eds.). The VNR concise encyclopedia of mathematics. Second edition. New York: Van Nostrand Reinhold, 1989, p.704f.
  • [19] Guenther R.B. & Lee J.W. Partial differential equations of mathematical physics and integral equations. New York: Dover, 1995, p.233ff.
  • [20] Roach G.F. Green’s functions. Cambridge: Cambridge Univ. Press, 1982, pp.1ff,79f,141.
  • [21] Iyanaga S. & Kawada Y. (Eds.) Encyclopedic dictionary of mathematics 1: A-M. Cambridge, MA: The MIT Press, 1980, p.28,604f.
  • [22] Lichnerowicz A. Linear algebra and analysis. San Francisco: Holden-Day, 1967, pp.256ff,260,275,279.
  • [23] Andrews L.C. Special functions for engineers and applied mathematicians. New York: Macmillan, 1985, p.108ff.
  • [24] Widom H. Lectures on integral equations. Mineola, NY: Dover, 2016, p.1ff.
  • [25] Muskhelishvili N.I. Singular integral equations. New York: Dover, 1992, p.214.
  • [26] Faulkner J.R. Octonion planes defined by quadratic Jordan algebras. Memoirs of the AMS 104. Providence, RI: AMS, 1970, p.6.
  • [27] Dwight H.B. Tables of integrals and other mathematical data. New York; Macmillan, 1961, p.20.
  • [28] Abbott S. Understanding analysis. New York: Springer, 2001, p.62ff.
  • [29] Tricomi F.G. Integral equations. New York: Interscience, 1957, p.161ff.
  • [30] Krylov V.I. Approximate calculation of integrals. Mineola, NY: Dover, 2005, p.277ff.
  • [31] Muskhelishvili N.I. Singular integral equations. New York: Dover, 1992, p.113ff.
  • [32] Zwillinger D. Handbook of integration. Boston: Jones and Bartlett Publishers, 1992, p.95ff.
  • [33] Nahin P.J. Inside interesting integrals (with an introduction to contour integration). New York: Springer, 2015, p.323ff.
  • [34] Snider A.D. Partial differential equations. Sources and solutions. Mineola, NY: Dover, 2006, p.42ff.
  • [35] Davis H.T. Introduction to nonlinear differential and integral equations. New York: Dover, 1962, p.413ff.
  • [36] Corduneanu C. Integral equations and applications. Cambridge: Cambridge Univ. Press, 1991, pp.56f,171f,140f,151f.
  • [37] Corduneanu C. Principles of differential and integral equations. Boston: Allyn and Bacon, 1971, p.155ff.
  • [38] Pólya G. Untersuchungen über Lücken und Singularitäten von Potennzreihen II. Zweite Mitteilung. [pp.543-592 in: Boas R.P. (Ed.) George Pólya collected papers I: Singularities of analytic functions. Cambridge, MA: The MIT Press, 1974, see p.550f].
  • [39] Pólya G. Über die Potenzreihenentwicklung gewisser mehrdeutigen Funktionen. [pp.593-613 in: Boas R.P. (Ed.) George Pólya collected papers I: Singularities of analytic functions. Cambridge, MA: The MIT Press, 1974, see p.596f].
  • [40] Pólya G. On polar singularities of power series and of Dirichlet series. [pp.521-537 in: Boas R.P. (Ed.) George Pólya collected papers I: Singularities of analytic functions. Cambridge, MA: The MIT Press, 1974].
  • [41] Pólya G. Untersuchungen über Lücken und Singularitäten von Potennzreihen. [pp.363-454 in: Boas R.P. (Ed.) George Pólya collected papers I: Singularities of analytic functions. Cambridge, MA: The MIT Press, 1974, see p.394f].
  • [42] Plancherel M. & Pólya G. Fonctions entières et integrals de Fourier multiples. [pp.619-643 in: Boas R.P. (Ed.) George Pólya collected papers I: Singularities of analytic functions. Cambridge, MA: The MIT Press, 1974, see pp.624f, 640ff].
  • [43] Boros G. & Moll V. Irresistible integrals. Symbolics, analysis and experiments in the evaluation of integrals. Cambridge: Cambridge Univ. Press, 2006, p.98.
  • [44] Weisstein E.W. Frullani’s integral. MathWorld.
  • [45] Bravo S. et al. Integrals of Frullani type and the method of brackets. Open Math. 15 (2017) 1-12
  • [46] Albano M. et al. The integrals in Gradshteyn and Ryzhik. Part 15: Frullani integrals. arXiv.
  • [47] Jefferys H. & Jeffreys B.S. Methods of mathematical physics. Cambridge: At The Univ. Press, 1972, p.406f.
  • [48] Edwards J. A treatise on the integral calculus II. New York: Chelsea, 1922, p.337f.
  • [49] Arias-de-Reyna J. On the theorem of Frullani. Proc. Am. Math. Soc. 109 (1990) 165-175
  • [50] Ostrowski A.M. On some generalizations of the Cauchy-Frullani integral. PNAS USA 35 (1949) 612-616
  • [51] Ostrowski A.M. On Cauchy-Frullani integrals. Comment. Math. Helvetici 51 (1976) 57-91
  • [52] Spiegel M.R. Schaum’s outline series. Mathematical handbook of formulas and tables. New York: McGraw-Hill Book, 1968, p.100.
  • [53] Czajko J. Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals. World Scientific News 132 (2019) 98-120
  • [54] Nahin P.J. Inside interesting integrals (with an introduction to contour integration). New York: Springer, 2015, pp.14f,15,16.
  • [55] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
  • [56] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54
  • [57] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
  • [58] Couturat L. De l’infini mathématique. New York: Burt Franklin, 1969, pp.99, 254,
  • [59] Couturat L. The algebra of logic. Mineola, NJ: Dover, 2005, pp.20f,22f.
  • [60] Shoenfield J.R. Mathematical logic. Reading, MA: Addison-Wesley, 1967, p.33.
  • [61] Czajko J. On unconventional division by zero. World Scientific News 99 (2018) 133-147
  • [62] Einstein A. & Mayer W. Einheitliche Theorie von Gravitation und Elektrizität. Sitz.-ber. Preuss. Ak. Wiss. 1931(25) 541
  • [63] Czajko J. On Cantorian Spacetime over Number Systems with Division by Zero. Chaos Solit. Fract. 21 (2004) 261-271
  • [64] Czajko J. Cantor and Generalized Continuum Hypotheses may be false. Chaos Solit. Fractals 21 (2004) 501-512
  • [65] Robert A.M. Nonstandard analysis. Mineola, NY: Dover, 2003, p.113f.
  • [66] Davis M. Applied nonstandard analysis. Minneola, NY: Dover, 2005, p.55.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-29b76ce5-b710-4031-98b9-6bf06b9de715
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.